OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 338–348

Influence of high-refractive-index oxide coating on optical properties of metal nanoparticles

Katri Laaksonen, Samu Suomela, Sakari R. Puisto, Niko K. J. Rostedt, Tapio Ala-Nissila, and Risto M. Nieminen  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 338-348 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The localized surface-plasmon resonance absorption of metal nanoparticles is currently utilized in many fields such as near-infrared (NIR) curing and biomedical applications. In this paper, we study theoretically the influence of an oxide (SiO2, ZrO2, or TiO2) shell on a metal (Ag, Au, or Cu) nanoparticle from the point of view of shifting the resonance peak to a more desirable color or NIR wavelengths while conserving the intensity of the absorption or extinction peak. The computational models used in the studies include the Mie theory and the four-flux method. We find shifts of up to hundreds or even close to 1000 nm. Among the material combinations studied, the largest shifts are obtained with Ag-TiO2 core-shell nanoparticles when going from a few nanometers sized core without an oxide shell to a 100 nm size core with a 100 nm thick shell. However, the huge shifts happen together with severe intensity loss of the absorption peak, leading to a more conservative estimate of practically useful shifts of a few hundreds of nanometers.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: August 15, 2012
Revised Manuscript: November 7, 2012
Manuscript Accepted: December 2, 2012
Published: January 14, 2013

Katri Laaksonen, Samu Suomela, Sakari R. Puisto, Niko K. J. Rostedt, Tapio Ala-Nissila, and Risto M. Nieminen, "Influence of high-refractive-index oxide coating on optical properties of metal nanoparticles," J. Opt. Soc. Am. B 30, 338-348 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011). [CrossRef]
  2. J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  3. R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2012). [CrossRef]
  4. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  5. L. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996). [CrossRef]
  6. I. Pastoriza-Santos, D. Koktysh, A. Mamedov, M. Giersig, N. Kotov, and L. Liz-Marzán, “One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly,” Langmuir 16, 2731–2735 (2000). [CrossRef]
  7. Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2, 785–788 (2002). [CrossRef]
  8. R. T. Tom, A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan, and T. Pradeep, “Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 coreshell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties,” Langmuir 19, 3439–3445 (2003). [CrossRef]
  9. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  10. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999). [CrossRef]
  11. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379(2008). [CrossRef]
  12. K. Laaksonen, S. Suomela, T. Ala-Nissila, and R. M. Nieminen, are preparing a manuscript to be called “Influence of high-refractive-index oxide core on optical properties of metal nanoshells.”
  13. G. Niklasson, “Modeling the optical properties of nanoparticles,” SPIE Newsroom, doi: 10.1117/2.1200603.0182 (2006). [CrossRef]
  14. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  15. D. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21, 2978–2981 (1982). [CrossRef]
  16. N. Ashcroft and N. Mermin, Solid State Physics, Thomson Learning (Saunders College, 1976).
  17. J. Zhang, Optical Properties and Spectroscopy of Nanomaterials (World Scientific, 2009).
  18. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  20. A. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  21. B. Maheu, J. Letoulouzan, and G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984). [CrossRef]
  22. B. Maheu and G. Gouesbet, “Four-flux models to solve the scattering transfer equation: special cases,” Appl. Opt. 25, 1122–1128 (1986). [CrossRef]
  23. W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998). [CrossRef]
  24. W. Vargas, P. Greenwood, J. Otterstedt, and G. Niklasson, “Light scattering in pigmented coatings: experiments and theory,” Sol. Energy 68, 553–561 (2000). [CrossRef]
  25. W. E. Vargas and G. A. Niklasson, “Pigment mass density and refractive index determination from optical measurements,” J. Phys. Condens. Matter 9, 1661–1669 (1997). [CrossRef]
  26. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  27. D.-Y. Liu, S.-Y. Ding, H.-X. Lin, B.-J. Liu, Z.-Z. Ye, F.-R. Fan, B. Ren, and Z.-Q. Tian, “Distinctive enhanced and tunable plasmon resonant absorption from controllable Au@Cu2O nanoparticles: experimental and theoretical modeling,” J. Phys. Chem. C 116, 4477–4483 (2012). [CrossRef]
  28. W. Vargas, “Light scattering and absorption in pigmented coatings: theory and experiments,” Ph.D. thesis (Uppsala University, 1997).
  29. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009). [CrossRef]
  30. A. Wokaun, J. Gordon, and P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982). [CrossRef]
  31. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited