OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 349–354

Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers

Yonghua Hu, Jie Huang, Xue Peng, and Jianbo Xu  »View Author Affiliations


JOSA B, Vol. 30, Issue 2, pp. 349-354 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000349


View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear imaging in the propagation of a flat-topped circular Gaussian beam under the coeffect of two parallel wirelike opaque scatterers is investigated through computer simulation. The formation of hot images of each scatterer is proved. Moreover, the formations of two other kinds of intense images are found; one is called interference hot image and the other is called pseudo-second-order hot image. The former corresponds to one intense image fringe whose in-beam position is at the middle point between those of the two scatterers. This image fringe is in the plane a quarter of an object distance away from the exit surface of the Kerr medium slab, and its intensity is found comparable to that of the hot image. The latter corresponds to two intense image fringes in a plane near the second-order hot-image plane predicted for single phase-typed scatterer cases. The respective in-beam positions of these image fringes are close to the respective in-beam positions of the scatterers. Interestingly, the intensities of both kinds of images are found primarily determined by the copresence rather than the in-beam positions of the scatterers. Besides, though the hot-image intensity can be lower than the corresponding single opaque scatterer case, the maximum intensity inside the Kerr medium slab increases more quickly and thus is much higher at the exit surface. This is another threat to the safe running of the Kerr media for high-power laser systems.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(260.5950) Physical optics : Self-focusing

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 18, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: November 28, 2012
Published: January 16, 2013

Citation
Yonghua Hu, Jie Huang, Xue Peng, and Jianbo Xu, "Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers," J. Opt. Soc. Am. B 30, 349-354 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-349

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited