OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 355–361

Highly efficient optical Fredkin gate with weak nonlinearities and classical information feed-forward

Meng-Zheng Zhu and Xin-Guo Yin  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 355-361 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scheme is proposed to implement the optical quantum Fredkin gate with weak nonlinearities and feed-forward. The distinctive feature of the present scheme is that the present Fredkin gate has four sets of possible output ports, and the total success probability for each set of the output ports is near 1/4 without ancillary single-photon. The present scheme requires nonlinear strength of the order of 10 3 and mean photon number of the probe coherent beam of the order of 10 6 so that the discrimination error probability does not exceed 10 4 . These features show that it is still possible to operate in the regime of weak cross-Kerr nonlinearities, and the amplitude of the probe coherent beam is physically reasonable with current technology. These facts make us more confident in the feasibility of the proposed scheme.

© 2013 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

Original Manuscript: July 26, 2012
Revised Manuscript: December 9, 2012
Manuscript Accepted: December 10, 2012
Published: January 16, 2013

Meng-Zheng Zhu and Xin-Guo Yin, "Highly efficient optical Fredkin gate with weak nonlinearities and classical information feed-forward," J. Opt. Soc. Am. B 30, 355-361 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Barnett, Quantum Information (Oxford University, 2009).
  2. L. K. Grover, “Quantum computers can search rapidly by using almost any transformation,” Phys. Rev. Lett. 80, 4329–4332 (1998). [CrossRef]
  3. H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004). [CrossRef]
  4. Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007). [CrossRef]
  5. L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005). [CrossRef]
  6. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995). [CrossRef]
  7. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087–4090 (1995). [CrossRef]
  8. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature 429, 737–739 (2004). [CrossRef]
  9. M. Z. Zhu, C. R. Zhao, and L. Ye, “Highly efficient scheme for the implementation of optical controlled-Z gate via two-qubit polarization parity detector,” Opt. Commun. 285, 1576–1580 (2012). [CrossRef]
  10. Z. C. Shi, Y. Xia, J. Song, and H. S. Song, “One-step implementation of the Fredkin gate via quantum Zeno dynamics,” Quantum Inf. Comput. 12, 215–230 (2012).
  11. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
  12. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  13. N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985). [CrossRef]
  14. P. Grangier, J. A. Levenson, and J. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998). [CrossRef]
  15. Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008). [CrossRef]
  16. C. R. Zhao and L. Ye, “Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity,” Opt. Commun. 284, 541–544 (2011). [CrossRef]
  17. G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger–Horne–Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007). [CrossRef]
  18. M. Gao, W. H. Hu, and C. Z. Li, “Generating polarization-entangled W states using weak nonlinearity,” J. Phys. B 40, 3525–3529 (2007). [CrossRef]
  19. D. Vitali, M. Fortunato, and P. Tombesi, “Complete quantum teleportation with a Kerr nonlinearity,” Phys. Rev. Lett. 85, 445–448 (2000). [CrossRef]
  20. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005). [CrossRef]
  21. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  22. I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic band gaps,” Phys. Rev. A 71, 023803 (2005). [CrossRef]
  23. E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982). [CrossRef]
  24. I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995). [CrossRef]
  25. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  26. J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006). [CrossRef]
  27. J. Fiurášek, “Linear optical Fredkin gate based on partial-SWAP gate,” Phys. Rev. A 78, 032317 (2008). [CrossRef]
  28. Y. X. Gong, G. C. Guo, and T. C. Ralph, “Methods for a linear optical quantum Fredkin gate,” Phys. Rev. A 78, 012305(2008). [CrossRef]
  29. G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989). [CrossRef]
  30. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005). [CrossRef]
  31. T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30 (2006). [CrossRef]
  32. P. Kok, “Effects of self-phase-modulation on weak nonlinear optical quantum gates,” Phys. Rev. A 77, 013808 (2008). [CrossRef]
  33. C. R. Zhao and L. Ye, “Efficient scheme for the preparation of symmetric Dicke states via cross-Kerr nonlinearity,” Phys. Lett. A 375, 401–405 (2011). [CrossRef]
  34. S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “The efficiencies of generating cluster states with weak nonlinearities,” New J. Phys. 9, 193 (2007). [CrossRef]
  35. H. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, 2004).
  36. P. Kok and B. Lovett, Introduction to Optical Quantum Information Processing (Cambridge University, 2010).
  37. B. He, Y. H. Ren, and J. A. A. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009). [CrossRef]
  38. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]
  39. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  40. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]
  41. B. He, M. Nadeem, and J. A. A. Bergou, “Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity,” Phys. Rev. A 79, 035802 (2009). [CrossRef]
  42. H. Jeong, “Quantum computation using weak nonlinearities: robustness against decoherence,” Phys. Rev. A 73, 052320 (2006). [CrossRef]
  43. T. Yamamoto, K. Hayashi, S. K. Ozdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat Photonics 2, 488–491 (2008). [CrossRef]
  44. B. He, Y. H. Ren, and J. A. Bergou, “Universal entangler with photon pairs in arbitrary states,” J. Phys. B 43, 025502 (2010). [CrossRef]
  45. Q. Lin and B. He, “Efficient generation of universal two-dimensional cluster states with hybrid systems,” Phys. Rev. A 82, 022331 (2010). [CrossRef]
  46. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef]
  47. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [CrossRef]
  48. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited