OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 362–365

Efficient generation of hyperentangled photon pairs with controllable waveforms from cold atoms

Hui Yan and Shi-liang Zhu  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 362-365 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme to efficiently generate time-frequency and polarization-entangled photon pairs with cold atomic ensembles via spontaneous four-wave mixing through combining the photon pairs from two symmetrical spatial modes by polarization beam splitters. With a two-dimensional magneto-optical trap, polarization-entangled photon pairs with controllable temporal length (>100ns) can be generated at the rate of about 105 per second after taking into account all losses. Therefore, it is a feasible photon source for scalable linear optical quantum computation and long-distance quantum communication.

© 2013 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

Original Manuscript: October 8, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 14, 2012
Published: January 16, 2013

Hui Yan and Shi-liang Zhu, "Efficient generation of hyperentangled photon pairs with controllable waveforms from cold atoms," J. Opt. Soc. Am. B 30, 362-365 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  2. D. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005). [CrossRef]
  3. L. M. Duan, M. D. Lukin, M. D. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  4. H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. W. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photonics 5, 628–632 (2011). [CrossRef]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  6. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008). [CrossRef]
  7. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999). [CrossRef]
  8. D. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004). [CrossRef]
  9. J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007). [CrossRef]
  10. S. Chen, Y.-A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J.-W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007). [CrossRef]
  11. V. Balic, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005). [CrossRef]
  12. S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100, 183603 (2008). [CrossRef]
  13. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via a spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26, 064204 (2009). [CrossRef]
  14. H. Yan, S. C. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106, 033601(2011). [CrossRef]
  15. S. Du, E. Oh, J. Wen, and M. H. Rubin, “Four-wave mixing in three-level systems: interference and entanglement,” Phys. Rev. A 76, 013803 (2007). [CrossRef]
  16. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003). [CrossRef]
  17. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731–734 (2003). [CrossRef]
  18. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010). [CrossRef]
  19. Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008). [CrossRef]
  20. S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett. 97, 173004 (2006). [CrossRef]
  21. Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater,” Nature 454, 1098–1101 (2008). [CrossRef]
  22. S. W. Du, J. M. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25, C98–C108 (2008). [CrossRef]
  23. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989). [CrossRef]
  24. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]
  25. J. F. Chen, S. Zhang, H. Yan, M. M. T. Loy, G. K. L. Wong, and S. Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Phys. Rev. Lett. 104, 183604 (2010). [CrossRef]
  26. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  27. H. Yan, S. L. Zhu, and S. W. Du, “Efficient phase-encoding quantum key generation with narrow-band single photons,” Chin. Phys. Lett. 28, 070307 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited