OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 421–427

Effective protocol for preparation of four-photon polarization-entangled decoherence-free states with cross-Kerr nonlinearity

Yan Xia, Mei Lu, Jie Song, Pei-Min Lu, and He-Shan Song  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 421-427 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an effective protocol for preparation of four-photon polarization-entangled decoherence-free states with quantum nondemolition detectors. The protocol is based on optical elements, single polarization photons, and cross-Kerr nonlinearity, which are feasible with existing experimental technology. Compared with previous protocols, the present one is to replace the entangled-state resources with much simpler single-photon resources and has a higher success probability. All these advantages make this protocol more efficient and more convenient than others in the applications in quantum communication.

© 2013 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: December 3, 2012
Revised Manuscript: December 15, 2012
Manuscript Accepted: December 15, 2012
Published: January 22, 2013

Yan Xia, Mei Lu, Jie Song, Pei-Min Lu, and He-Shan Song, "Effective protocol for preparation of four-photon polarization-entangled decoherence-free states with cross-Kerr nonlinearity," J. Opt. Soc. Am. B 30, 421-427 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  2. J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1, 195–200 (1964).
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  7. C. Wang, L. Xiao, W. Y. Wang, G. Y. Zhang, and G. L. Long, “Quantum key distribution using polarization and frequency hyperentangled photons,” J. Opt. Soc. Am. B 26, 2072–2076 (2009). [CrossRef]
  8. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  9. F. G. Deng and G. L. Long, “Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  10. H. Kim, Y. M. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004). [CrossRef]
  11. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493 (1995). [CrossRef]
  12. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996). [CrossRef]
  13. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect quantum error correcting code,” Phys. Rev. Lett. 77, 198–201(1996). [CrossRef]
  14. Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,” Phys. Rev. Lett. 91, 087901 (2003). [CrossRef]
  15. T. Yamamoto, J. Shimamura, S. K. Özdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005). [CrossRef]
  16. D. Kalamidas, “Single-photon quantum error rejection and correction with linear optics,” Phys. Lett. A 343, 331–335 (2005). [CrossRef]
  17. X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
  18. Y. B. Sheng and F. G. Deng, “Efficient quantum entanglement distribution over an arbitrary collective-noise channel,” Phys. Rev. A 81, 042332 (2010). [CrossRef]
  19. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999). [CrossRef]
  20. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  21. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
  22. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  23. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  24. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  25. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  26. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  27. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  28. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  29. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003). [CrossRef]
  30. T. Yamamoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003). [CrossRef]
  31. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
  32. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
  33. J. W. Pan, C. Simon, C. Brukner, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
  34. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef]
  35. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  36. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  37. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  38. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  39. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  40. C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
  41. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  42. C. Wang, Y. B. Sheng, X. H. Li, F. G. Deng, W. Zhang, and G. L. Long, “Efficient entanglement purification for doubly entangled photon state,” Sci. China Ser. E 52, 3464–3467 (2009). [CrossRef]
  43. L. M. Duan and G. C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997). [CrossRef]
  44. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001). [CrossRef]
  45. J. B. Altepeter, P. G. Hadley, S. M. Wendelken, A. J. Berglund, and P. G. Kwiat, “Experimental investigation of a two-qubit decoherence-free subspace,” Phys. Rev. Lett. 92, 147901 (2004). [CrossRef]
  46. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004). [CrossRef]
  47. X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006). [CrossRef]
  48. Y. X. Gong, X. B. Zou, X. L. Niu, J. Li, Y. F. Huang, and G. C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008). [CrossRef]
  49. Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129–132 (2009). [CrossRef]
  50. Y. Xia, J. Song, Z. B. Yang, and S. B. zheng, “Generation of four-photon polarization-entangled decoherence-free states within a network,” Appl. Phys. B 99, 651–656 (2010). [CrossRef]
  51. Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Generation of four-atom entangled decoherence-free states by interference of polarized photons,” J. Mod. Opt. 56, 1545–1549 (2009). [CrossRef]
  52. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  53. Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity,” J. Phys. B 44, 025503 (2011). [CrossRef]
  54. Y. Xia, Q. Q. Chen, J. Song, and H. S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1029–1037 (2012). [CrossRef]
  55. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
  56. G. L. Long, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45, 825–844 (2006). [CrossRef]
  57. X. B. Zou, K. Pahike, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002). [CrossRef]
  58. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowing, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  59. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]
  60. J. H. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 1–17 (2007). [CrossRef]
  61. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005). [CrossRef]
  62. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single-atom nonlinearity,” J. Opt. B Quantum Semiclass. Opt 5, 218–221 (2003). [CrossRef]
  63. P. Kok, “Effects of self-phase-modulation on weak nonlinear optical quantum gates,” Phys. Rev. A 77, 013808 (2008). [CrossRef]
  64. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009). [CrossRef]
  65. Q. Lin, B. He, J. A. Bergou, and Y. H. Ren, “Processing multiphoton states through operation on a single photon: methods and applications,” Phys. Rev. A 80, 042311 (2009). [CrossRef]
  66. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef]
  67. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  68. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef]
  69. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000). [CrossRef]
  70. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger–Horne–Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited