OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 468–474

One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage

Si-Yang Hao, Yan Xia, Jie Song, and Nguyen Ba An  »View Author Affiliations


JOSA B, Vol. 30, Issue 2, pp. 468-474 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000468


View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme to deterministically generate Greenberger–Horne–Zeilinger states of N3 atoms trapped in spatially separated cavities connected by optical fibers. The scheme is based on the technique of fractional stimulated Raman adiabatic passage, which is a one-step technique in the sense that one needs only to wait for the desired entangled state to be generated in the stationary regime. The parametrized shapes of the Rabi frequencies of the classical fields that drive the two end atoms are chosen appropriately to realize the scheme. We also show numerically that the proposed scheme is insensitive to fluctuations of the pulses’ parameters and, at the same time, that it is robust against decoherence caused by the dissipation due to fiber decay. Moreover, a relatively high fidelity can be obtained even in the presence of cavity decay and atomic spontaneous emission.

© 2013 Optical Society of America

OCIS Codes
(270.5570) Quantum optics : Quantum detectors
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: October 22, 2012
Revised Manuscript: December 12, 2012
Manuscript Accepted: December 31, 2012
Published: January 30, 2013

Citation
Si-Yang Hao, Yan Xia, Jie Song, and Nguyen Ba An, "One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage," J. Opt. Soc. Am. B 30, 468-474 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1, 195–200 (1964).
  2. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142(1990). [CrossRef]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  5. Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Teleportation of an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state using linear optical elements,” J. Opt. Soc. Am. B 27, A1–A6 (2010). [CrossRef]
  6. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef]
  7. J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger state analyzer,” Phys. Rev. A 57, 002208 (1998). [CrossRef]
  8. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  9. W. Dur, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  10. S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998). [CrossRef]
  11. R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999). [CrossRef]
  12. V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001). [CrossRef]
  13. G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptograph,” Phys. Rev. Lett. 88, 187902 (2002). [CrossRef]
  14. C. P. Yang, S.-I Chu, and S. Han, “Efficient many-party controlled teleportation of multiqubit quantum information via entanglement,” Phys. Rev. A 70, 022329 (2004). [CrossRef]
  15. D. P. DiVincenzo and P. W. Shor, “Fault-tolerant error correction with efficient quantum codes,” Phys. Rev. Lett. 77, 3260–3263 (1996). [CrossRef]
  16. J. Preskill, “Reliable quantum computers,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 385–410 (1998). [CrossRef]
  17. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54, R4649–R4652 (1996). [CrossRef]
  18. S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, “Improvement of frequency standards with quantum entanglement,” Phys. Rev. Lett. 79, 3865–3868(1997). [CrossRef]
  19. D. Leibfried, E. Knill, S. Seidelin, and J. Britton, “Greation of a six-atom ‘Schrodinger cat’ state,” Nature 438, 639–642 (2005). [CrossRef]
  20. Z. Zhao, Y. Chen, A. N. Zheng, Y. Yang, H. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004). [CrossRef]
  21. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  22. R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger–Horne–Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106 (2000). [CrossRef]
  23. M. Neeley, R. C. Bialczak, M. Lenander, and E. Lucero, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature 467, 570–573 (2010). [CrossRef]
  24. P. B. Li and F. L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207–1216 (2011). [CrossRef]
  25. X. Y. Lv, P. J. Song, J. B. Liu, and X. Yang, “N-qubit W state of separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009). [CrossRef]
  26. A. Zheng and J. Liu, “Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B 44, 165501 (2011). [CrossRef]
  27. S. B Zheng, “Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D 54, 719–722 (2009). [CrossRef]
  28. X. Y. Lv, L. G. Si, X. Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009). [CrossRef]
  29. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  30. Z. B. Yang, S. Y. Ye, A. Serafini, and S. B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B 43, 085506 (2010). [CrossRef]
  31. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  32. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
  33. S. J. van Enk, J. I. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: a quantum optical implementation,” Phys. Rev. Lett. 78, 4293–4296 (1997). [CrossRef]
  34. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5167 (1999). [CrossRef]
  35. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001). [CrossRef]
  36. A. S. Parkins and H. J. Kimble, “Position-momentum Einstein–Podolsky–Rosen state of distantly Separated trapped atoms,” Phys. Rev. A 61, 052104 (2000). [CrossRef]
  37. S. B. Zheng, “A simplified scheme for realizing Greenberger–Horne–Zeilinger states,” J. Opt.B Quantum Semiclass. Opt. 1, 534–535 (1999). [CrossRef]
  38. W. A. Li and L. F. Wei, “Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics,” Opt. Express 20, 13440–13450 (2012). [CrossRef]
  39. P. Kral, L. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007). [CrossRef]
  40. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999). [CrossRef]
  41. U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92, 5363–5376 (1990). [CrossRef]
  42. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998). [CrossRef]
  43. P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev. A 44, R4118–R4121 (1991). [CrossRef]
  44. T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242–5245 (1997). [CrossRef]
  45. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamic,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  46. J. R. Buck and H. J. Kimble, “Optimale sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]
  47. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef]
  48. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
  49. S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited