OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 475–481

Entanglement dynamics of three atoms under quantum-jump-based feedback control

Li Chen, Hong-Fu Wang, and Shou Zhang  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 475-481 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000475


View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate entanglement dynamics of three driven atoms off-resonantly coupled with a single-mode cavity under quantum-jump-based feedback control. The results demonstrate that the tripartite entanglement can be effectively enhanced and the steady W state and asymmetric W states can be obtained by setting the Rabi frequencies of classical fields and choosing the local quantum feedback control. Furthermore, the tripartite decoherence-free entangled states are found when the atoms are driven by classical fields with appropriate Rabi frequencies. The asymmetric W states and W state can be converted into each other via feedback control. In theory, the multiqubit W state can be generated and stabilized by our approach.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 6, 2012
Revised Manuscript: November 17, 2012
Manuscript Accepted: December 17, 2012
Published: February 5, 2013

Citation
Li Chen, Hong-Fu Wang, and Shou Zhang, "Entanglement dynamics of three atoms under quantum-jump-based feedback control," J. Opt. Soc. Am. B 30, 475-481 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Simon and J. Kempe, “Robustness of multiparty entanglement,” Phys. Rev. A 65, 052327 (2002). [CrossRef]
  2. W. Dür and H. J. Briegel, “Stability of macroscopic entanglement under decoherence,” Phys. Rev. Lett. 92, 180403 (2004). [CrossRef]
  3. A. R. R. Carvalho, F. Mintert, and A. Buchleitner, “Decoherence and multipartite entanglement,” Phys. Rev. Lett. 93, 230501 (2004). [CrossRef]
  4. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef]
  5. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007). [CrossRef]
  6. N. B. An, J. Kim, and K. Kim, “Nonperturbative analysis of entanglement dynamics and control for three qubits in a common lossy cavity,” Phys. Rev. A 82, 032316 (2010). [CrossRef]
  7. J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99, 180504 (2007). [CrossRef]
  8. T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006). [CrossRef]
  9. N. B. An, J. Kim, and K. Kim, “Entanglement dynamics of three interacting two-level atoms within a common structured environment,” Phys. Rev. A 84, 022329 (2011). [CrossRef]
  10. I. Sainz and G. Björk, “Quantum error correction may delay, but also cause, entanglement sudden death,” Phys. Rev. A 77, 052307 (2008). [CrossRef]
  11. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998). [CrossRef]
  12. D. A. Lidar, D. Bacon, and K. B. Whaley, “Concatenating decoherence-free subspaces with quantum error correcting codes,” Phys. Rev. Lett. 82, 4556–4559 (1999). [CrossRef]
  13. F. Francica, F. Plastina, and S. Maniscalco, “Quantum Zeno and anti-Zeno effects on quantum and classical correlations,” Phys. Rev. A 82, 052118 (2010). [CrossRef]
  14. G. Gordon and G. Kurizki, “Preventing multipartite disentanglement by local modulations,” Phys. Rev. Lett. 97, 110503 (2006). [CrossRef]
  15. S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008). [CrossRef]
  16. H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A 49, 2133–2150 (1994). [CrossRef]
  17. A. C. Doherty and K. Jacobs, “Feedback control of quantum systems using continuous state estimation,” Phys. Rev. A 60, 2700–2711 (1999). [CrossRef]
  18. V. P. Belavkin, “Measurement, filtering and control in quantum open dynamical systems,” Rep. Math. Phys. 43, A405–A425 (1999). [CrossRef]
  19. H. M. Wiseman and G. J. Milburn, “Quantum theory of optical feedback via homodyne detection,” Phys. Rev. Lett. 70, 548–551 (1993). [CrossRef]
  20. J. M. Geremia, J. K. Stockton, and H. Mabuchi, “Real-time quantum feedback control of atomic spin-squeezing,” Science 304, 270–273 (2004). [CrossRef]
  21. J. E. Reiner, W. P. Smith, L. A. Orozco, H. M. Wiseman, and J. Gambetta, “Quantum feedback in a weakly driven cavity QED system,” Phys. Rev. A 70, 023819 (2004). [CrossRef]
  22. N. V. Morrow, S. K. Dutta, and G. Raithel, “Feedback control of atomic motion in an optical lattice,” Phys. Rev. Lett. 88, 093003 (2002). [CrossRef]
  23. P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J. Eschner, R. Blatt, V. Steixner, P. Rabl, and P. Zoller, “Feedback cooling of a single trapped ion,” Phys. Rev. Lett. 96, 043003 (2006). [CrossRef]
  24. C. Sayrin, I. Dotsenko, X. X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J. M. Raimond, and S. Haroche, “Real-time quantum feedback prepares and stabilizes photon number states,” Nature 477, 73–77 (2011). [CrossRef]
  25. S. Mancini, “Markovian feedback to control continuous-variable entanglement,” Phys. Rev. A 73, 010304(R) (2006). [CrossRef]
  26. S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007). [CrossRef]
  27. S. Mancini and J. Wang, “Towards feedback control of entanglement,” Eur. Phys. J. D 32, 257–260 (2005). [CrossRef]
  28. A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007). [CrossRef]
  29. S. C. Hou, X. L. Huang, and X. X. Yi, “Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems,” Phys. Rev. A 82, 012336 (2010). [CrossRef]
  30. J. Song, Y. Xia, and X. D. Sun, “Noise-induced quantum correlations via quantum feedback control,” J. Opt. Soc. Am. B 29, 268–273 (2012). [CrossRef]
  31. A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008). [CrossRef]
  32. J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005). [CrossRef]
  33. Y. Li, B. Luo, and H. Guo, “Entanglement and quantum discord dynamics of two atoms under practical feedback control,” Phys. Rev. A 84, 012316 (2011). [CrossRef]
  34. J. G. Li, J. Zou, B. Shao, and J. F. Cai, “Steady atomic entanglement with different quantum feedbacks,” Phys. Rev. A 77, 012339 (2008). [CrossRef]
  35. R. N. Stevenson, A. R. R. Carvalho, and J. J. Hope, “Production of entanglement in Raman three-level systems using feedback,” Eur. Phys. J. D 61, 523–529 (2011). [CrossRef]
  36. W. Feng, P. Wang, X. Ding, L. Xu, and X. Q. Li, “Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback,” Phys. Rev. A 83, 042313 (2011). [CrossRef]
  37. X. Q. Shao, T. Y. Zheng, and S. Zhang, “Engineering steady three-atom singlet states via quantum-jump-based feedback,” Phys. Rev. A 85, 042308 (2012). [CrossRef]
  38. R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011). [CrossRef]
  39. J. Song, Y. Xia, X. D. Sun, and H. S. Song, “Dissipative preparation of multibody entanglement via quantum feedback control,” Phys. Rev. A 86, 034303 (2012). [CrossRef]
  40. J. Joo, Y. J. Park, S. Oh, and J. Kim, “Quantum teleportation via a W state,” New J. Phys. 5, 136 (2003). [CrossRef]
  41. P. Agrawal and A. Pati, “Perfect teleportation and superdense coding with W states,” Phys. Rev. A 74, 062320 (2006). [CrossRef]
  42. S. B. Zheng, “Splitting quantum information via W states,” Phys. Rev. A 74, 054303 (2006). [CrossRef]
  43. Y. C. Ou and H. Fan, “Monogamy inequality in terms of negativity for three-qubit states,” Phys. Rev. A 75, 062308 (2007). [CrossRef]
  44. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000). [CrossRef]
  45. M. R. Hwang, D. Park, and E. Jung, “Tripartite entanglement in a noninertial frame,” Phys. Rev. A 83, 012111 (2011). [CrossRef]
  46. J. Wang and J. Jing, “Multipartite entanglement of fermionic systems in noninertial frames,” Phys. Rev. A 83, 022314 (2011). [CrossRef]
  47. X. W. Hou, M. F. Wan, and Z. Q. Ma, “Tripartite entanglement dynamics for mixed states in the Tavis-Cummings model with intrinsic decoherence,” Eur. Phys. J. D 66, 152 (2012). [CrossRef]
  48. L. M. Duan and G. C. Guo, “Optimal quantum codes for preventing collective amplitude damping,” Phys. Rev. A 58, 3491–3495 (1998). [CrossRef]
  49. K. Härkönen, F. Plastina, and S. Maniscalco, “Dicke model and environment-induced entanglement in ion-cavity QED,” Phys. Rev. A 80, 033841 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited