OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 482–488

Impact of decoherence on internal state cooling using optical frequency combs

S. A. Malinovskaya and S. L. Horton  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 482-488 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss femtosecond Raman-type techniques to control molecular vibrations, which can be implemented for internal-state cooling from Feshbach states with the use of optical frequency combs (OFCs) with and without modulation. The technique makes use of multiple two-photon resonances induced by optical frequencies present in the comb. It provides us with a useful tool to study the details of molecular dynamics at ultracold temperatures. In our theoretical model we take into account decoherence in the form of spontaneous emission and collisional dephasing in order to ascertain an accurate model of the population transfer in the three-level system. We analyze the effects of odd and even chirps of the OFC in the form of sine and cosine functions on the population transfer. We compare the effects of these chirps to the results attained with the standard OFC to see if they increase the population transfer to the final deeply bound state in the presence of decoherence. We also analyze the inherent phase relation that takes place owing to collisional dephasing between molecules in each of the states. This ability to control the rovibrational states of a molecule with an OFC enables us to create deeply bound ultra-cold polar molecules from the Feshbach state.

© 2013 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(290.5860) Scattering : Scattering, Raman
(020.1335) Atomic and molecular physics : Atom optics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 31, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 4, 2013
Published: February 8, 2013

S. A. Malinovskaya and S. L. Horton, "Impact of decoherence on internal state cooling using optical frequency combs," J. Opt. Soc. Am. B 30, 482-488 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Deiglmayr, M. Repp, O. Dulieu, R. Wester, and M. Weidemuller, “Population redistribution in optically trapped polar molecules,” Eur. Phys. J. D 65, 99–104 (2011). [CrossRef]
  2. J. Qian, L. Zhou, K. Zhang, and W. Zhang, “Bose–Einstein condensates via an all-optical R-type atom-molecule adiabatic passage,” New J. Phys. 12, 033002 (2010). [CrossRef]
  3. I. Manai, R. Horchani, H. Lignier, P. Pillet, D. Comparat, A. Fioretti, and M. Allegrini, “Rovibrational cooling of molecules by optical pumping,” Phys. Rev. Lett. 109, 183001 (2012). [CrossRef]
  4. K.-K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, “Dipolar collisions of polar molecules in the quantum regime,” Nature 464, 1324–1328 (2010). [CrossRef]
  5. K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Juliene, D. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008). [CrossRef]
  6. M. C. Stowe, A. Peér, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100, 203001 (2008). [CrossRef]
  7. W. Shi and S. Malinovskaya, “Implementation of a single femtosecond optical frequency comb for molecular cooling,” Phys. Rev. A 82, 013407 (2010). [CrossRef]
  8. E. A. Shapiro, A. Pe’er, J. Ye, and M. Shapiro, “Piecewise adiabatic population transfer in a molecule via a wave packet,” Phys. Rev. Lett. 101, 023601 (2008). [CrossRef]
  9. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodine saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981). [CrossRef]
  10. T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101, 243602 (2008). [CrossRef]
  11. D. Goswami, “Laser pulse modulation approaches towards ensemble quantum computing,” Phys. Rev. Lett. 88, 177901 (2002). [CrossRef]
  12. J. Ye and S. T. Cundiff, eds., Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
  13. P. R. Berman and R. C. O’Connell, “Constraints on dephasing widths and shifts in three-level quantum systems,” Phys. Rev. A 71, 022501 (2005). [CrossRef]
  14. S. G. Schirmer and A. I. Solomon, “Constraints on relaxation rates for N-level quantum systems,” Phys. Rev. A 70, 022107 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited