OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 530–540

Lossless polarization attraction of copropagating beams in telecom fibers

Victor V. Kozlov, Matteo Barozzi, Armando Vannucci, and Stefan Wabnitz  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 530-540 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000530


View Full Text Article

Enhanced HTML    Acrobat PDF (779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the performance of a nonlinear lossless polarizer (NLP), the device that transforms an input arbitrary state of polarization (SOP) of a signal beam into one and the same SOP toward the output and, unlike conventional passive polarizers, performs this transformation without polarization-dependent losses. The operation principle of this device is based on the nonlinear rotation of the SOP of the strong signal beam under the interaction with a copropagating strong pump beam in a Kerr medium, which in our case is a telecom fiber. We quantify the performance of this NLP by introducing the notion of instantaneous degree of polarization, which is a natural extension of the conventional notion of the degree of polarization appropriate for CW beams to the case of pulses whose SOP is not constant across the pulse. We pay particular attention to the regime when signal and pump beams experience a walk-off in the dispersive medium. In particular, we demonstrate that a signal pulse experiences much stronger repolarization when the walk-off effect is present as compared with the case of no walk-off. We also study the degradation of the efficiency of the NLP in the presence of polarization mode dispersion.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 18, 2012
Manuscript Accepted: December 26, 2012
Published: February 12, 2013

Citation
Victor V. Kozlov, Matteo Barozzi, Armando Vannucci, and Stefan Wabnitz, "Lossless polarization attraction of copropagating beams in telecom fibers," J. Opt. Soc. Am. B 30, 530-540 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25, 257–259 (2000). [CrossRef]
  2. V. V. Kozlov, K. Turitsyn, and S. Wabnitz, “Nonlinear repolarization in optical fibers: polarization attraction with copropagating beams,” Opt. Lett. 36, 4050–4052 (2011). [CrossRef]
  3. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81, 1409–1412 (1998). [CrossRef]
  4. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443(2001). [CrossRef]
  5. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29, 599–601 (2004). [CrossRef]
  6. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef]
  7. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005). [CrossRef]
  8. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010). [CrossRef]
  9. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011). [CrossRef]
  10. D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, “Role of singular tori in the dynamics of spatiotemporal nonlinear wave systems,” Phys. Rev. Lett. 103, 034102 (2009). [CrossRef]
  11. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025 (2010). [CrossRef]
  12. S. Lagrange, D. Sugny, A. Picozzi, and H. R. Jauslin, “Singular tori as attractors of four-wave-interaction systems,” Phys. Rev. E 81, 016202 (2010). [CrossRef]
  13. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010). [CrossRef]
  14. V. V. Kozlov, J. Nuño, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28, 100–108 (2011). [CrossRef]
  15. E. Assemat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4040 (2011). [CrossRef]
  16. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35, 3949–3951 (2010). [CrossRef]
  17. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28, 1782–1791 (2011). [CrossRef]
  18. S. Pitois and M. Haelterman, “Optical fiber polarization funnel,” in Nonlinear Guided Waves and Their Applications, OSA Technical Digest Series (Optical Society of America, 2001), pp. 278–280.
  19. V. V. Kozlov, Javier Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optics Raman polarizer,” Opt. Lett. 35, 3970–3972 (2010). [CrossRef]
  20. S. V. Manakov, “On the theory of two-dimensional stationary self focussing of electromagnetic waves,” Sov. Phys. J. Exper. Theor. Phys. 38, 248–253 (1974).
  21. D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15, 1735–1746 (1997). [CrossRef]
  22. P. Serena, M. Bertolini, and A. Vannucci, “Optilux Toolbox,” http://optilux.sourceforge.net/Documentation/optilux_doc.pdf .
  23. M. Barozzi, A. Vannucci, and D. Sperti, “A simple counter-propagation algorithm for optical signals (SCAOS) to simulate polarization attraction,” in Proceedings of Fotonica 2012(AEIT - Federazione Italiana di Elettrotecnica, Elettronica, Automazione, Informatica e Telecomunicazioni, 2012), A6.4.
  24. M. Barozzi, A. Vannucci, and D. Sperti, “Lossless polarization attraction simulation with a novel and simple counterpropagation algorithm for optical signals,” JEOS RP 7, 12042 (2012). [CrossRef]
  25. A. Bononi and A. Vannucci, “Is there life beyond the principal states of polarization?,” Opt. Fiber Technol. 8, 257–294 (2002). [CrossRef]
  26. D. Breuer, H.-J. Tessmann, A. Gladisch, H. M. Foisel, G. Neumann, H. Reiner, and H. Cremer, “Measurements of PMD in the installed fiber plant of Deutsche Telekom,” in IEEE LEOS Summer Topical Meetings (IEEE, 2003), pp. MB2.1–MB2.2.
  27. M. Barozzi and A. Vannucci, “Performance analysis of lossless polarization attractors,” in Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper LM3C.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited