OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 559–567

Electro-optic effect in BaTiO3 for spectral tuning of narrowband resonances

Da Shu, Evgeny Popov, and Anne-Laure Fehrembach  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 559-567 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the electro-optic (E-O) properties of a BaTiO3 thin layer placed in a stack of dielectric layers, including a subwavelength diffraction grating with a two-dimensional periodicity, aiming to tune spectrally the position of the resonant reflection peak that is used for narrowband optical filtering. BaTiO3 is chosen due to its strong E-O properties. When an external electric field is applied to the E-O layer, it leads to a spectral shift of the resonant peak. We study numerically different configurations with either weak or strong spectral tunability, presenting some arguments to explain these different behaviors. Taking into account only the linear part of the E-O effect (Pockels effect), the tuning of the peak that has 0.1 nm spectral width is approximately 33 nm for a 1.5×107V/m applied field. The shift is multiplied by three (97 nm) when also taking into account the quadratic E-O effect.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.2090) Optical devices : Electro-optical devices
(310.2790) Thin films : Guided waves

ToC Category:
Optical Devices

Original Manuscript: November 8, 2012
Manuscript Accepted: January 9, 2013
Published: February 14, 2013

Da Shu, Evgeny Popov, and Anne-Laure Fehrembach, "Electro-optic effect in BaTiO3 for spectral tuning of narrowband resonances," J. Opt. Soc. Am. B 30, 559-567 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  2. E. Popov and E. Bozhkov, “Corrugated waveguides as resonance optical filters advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001). [CrossRef]
  3. A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136–1145 (2002). [CrossRef]
  4. R. Magnusson, D. Shin, and Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett. 23, 612–614 (1998). [CrossRef]
  5. A. Mizutani, H. Kikuta, and K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003). [CrossRef]
  6. H. Ichikawa and H. Kikuta, “Dynamic guided-mode resonant grating filter with quadratic electro-optic effect,” J. Opt. Soc. Am. A 22, 1311–1318 (2005). [CrossRef]
  7. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingueber, “Light modulation with resonant grating waveguide structures,” Opt. Lett. 21, 1564–1566(1996). [CrossRef]
  8. T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13, 4645–4650 (2005). [CrossRef]
  9. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  10. M. Melnichuk, “Method for measuring off-diagonal Kerr coefficients by using polarized light transmission,” J. Opt. Soc. Am. A 22, 377–384 (2005). [CrossRef]
  11. A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002). [CrossRef]
  12. P. Tang, D. J. Towner, T. Hamano, and A. L. Meier, “Electro-optic modulation up to 40 GHz in a barium titanate thin film waveguide modulator,” Opt. Express 12, 5962–5967 (2004). [CrossRef]
  13. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  14. S. Laux, N. Kaiser, A. Zöller, R. Gützelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation,” Thin Solid Films 335, 1–5 (1998); see also http://www.luxpop.com . [CrossRef]
  15. L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Technol. 166, 44–50 (2003). [CrossRef]
  16. S. A. Kemme, R. R. Boye, D. W. Peters, and R. O. Nellums, “Active resonant subwavelength grating for scannerless range imaging sensors,” Proc. SPIE 6469, 646906 (2007). [CrossRef]
  17. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett. 32, 2269–2271 (2007). [CrossRef]
  18. A.-L. Fehrembach, F. Lemarchand, and A. Talneau, “High Qpolarization independent guided-mode resonance filter with ‘doubly periodic’ etaced Ta2O5 bidimensional grating,” J. Lightwave Technol. 28, 2037–2044 (2010). [CrossRef]
  19. F. Lemarchand and A. Sentenac, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  20. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603 (2004). [CrossRef]
  21. K. Sreenivas, A. Mansingh, and M. Sayer, “Structural and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys. 62, 4475–4481 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited