OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 568–575

Detection of second-order nonlinear optical magnetization by mapping normalized Stokes parameters

Fabio Antonio Bovino, Maria Cristina Larciprete, Concita Sibilia, Gregory Leahu, György Váró, and Csilla Gergely  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 568-575 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000568


View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A measurable magnetic (nonlocal) contribution to the second harmonic generation (SHG) of nonmagnetic materials is an intriguing issue related to chiral materials, such as biomolecules. Here we report the detection of an intensity-dependent optically induced magnetization of a chiral bacteriorhodopsin film under femtosecond pulse excitation (830 nm) and far from the material’s resonance. The analysis of the pump intensity-dependent noncollinear SHG signal, by means of the polarization map of normalized Stokes parameters, allows one to improve the detection of the nonlinear optical magnetization M(2ω) contribution to the SHG signal.

© 2013 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.1585) Materials : Chiral media

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 3, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: January 9, 2013
Published: February 14, 2013

Citation
Fabio Antonio Bovino, Maria Cristina Larciprete, Concita Sibilia, Gregory Leahu, György Váró, and Csilla Gergely, "Detection of second-order nonlinear optical magnetization by mapping normalized Stokes parameters," J. Opt. Soc. Am. B 30, 568-575 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Persoon, “Nonlinear optics, chirality, magneto-optics: a serendipitous road,” Opt. Mater. Express 1, 5–16 (2011). [CrossRef]
  2. T. Verbiest, K. Clays, and V. Rodriguez, Second Order Nonlinear Optical Characterization Techniques (CRC, 2009).
  3. P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17, 421–437 (2005). [CrossRef]
  4. J. Maki and A. Persoons, “One electron second order optical activity of a helix,” J. Chem. Phys. 104, 9340–9348 (1996). [CrossRef]
  5. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyratory due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 1–4 (2006). [CrossRef]
  6. M. Lapine, I. Shadrivov, D. Powell, and Y. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 138, 1–4 (2011). [CrossRef]
  7. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107, 257401–257404 (2011). [CrossRef]
  8. A. Belardini, F. Pannone, G. Lehaou, M. C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, and F. Buatier de Mongeot, “Evidence of anomalous refraction of self-assembled gold nanowires,” Appl. Phys. Lett. 100, 251109 (2012). [CrossRef]
  9. M. Ren, E. Plum, J. Xu, and N. I. Zhludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833–834 (2012). [CrossRef]
  10. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Second harmonic generation from chiral surfaces,” J. Chem. Phys. 101, 8193–8200 (1994). [CrossRef]
  11. S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412 (2005). [CrossRef]
  12. S. Cattaneo and M. Kauranen, “Polarization techniques for surface nonlinear optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), pp. 69–101.
  13. F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012). [CrossRef]
  14. T. Verbiest, S. Sioncke, and A. Persoon, “Magnetic-dipole nonlinearities in chiral materials,” J. Photochem. Photobiol. A 145, 113–115 (2001). [CrossRef]
  15. C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390–9395 (1997). [CrossRef]
  16. R. Wampler, M. Zhou, D. H. Thomson, and G. J. Simpson, “Mechanism of the chiral SHG activity of bacteriorhodopsin films,” J. Am. Chem. Soc. 128, 10994–10995 (2006). [CrossRef]
  17. F. A. Bovino, M. C. Larciprete, M. Giardina, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” patent EP2414893, USP 20120158366 (August2, 2010).
  18. M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191(2009). [CrossRef]
  19. F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009). [CrossRef]
  20. D. Oesterhelt, J. Tittor, and E. Bamberg, “A unifying concept for ion translocation by retinal proteins,” J. Bioenerg. Biomembr. 24, 181–191 (1992). [CrossRef]
  21. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of alobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979). [CrossRef]
  22. M. C. Larciprete, A. Belardini, C. Sibilia, M. B. Saab, G. Varo, and C. Gergely, “Optical chirality of bacteriorhodopsin films via second harmonic maker’s fringes measurements,” Appl. Phys. Lett. 96, 221108 (2010). [CrossRef]
  23. Q. Wang Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993). [CrossRef]
  24. O. Bouevitch and A. Lewis, “Probing bacteriorhodopsin photochemistry with nonlinear optics: comparing the second harmonic generation of bR and the photochemically induced intermediate K,” Opt. Commun. 116, 170–174 (1995). [CrossRef]
  25. Z. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19, 1409–1411 (1994). [CrossRef]
  26. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3, 205–271 (2011). [CrossRef]
  27. N. J. Begue, M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry 2. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009). [CrossRef]
  28. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear optical response of planar G-shaped nanostructures,” Opt. Express 20, 8518–8523(2012). [CrossRef]
  29. M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited