OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 589–597

Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation

Xiao-Ming Xiu, Li Dong, Hong-Zhi Shen, Ya-Jun Gao, and X. X. Yi  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 589-597 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a construction scheme of a two-photon polarization controlled arbitrary phase gate based on weak cross-phase modulation. Assisted with weak cross-phase modulation and homodyne measurement on the coherent states, the individual photons are entangled together. Employing the combination of optical elements and classical feed-forward techniques, the target photon can have a conditionally shifted arbitrary phase with efficiency approaching nearly unity. With a large-amplitude coherent state, the high success probability of the controlled arbitrary phase gate can be guaranteed.

© 2013 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: October 8, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: January 9, 2013
Published: February 15, 2013

Xiao-Ming Xiu, Li Dong, Hong-Zhi Shen, Ya-Jun Gao, and X. X. Yi, "Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation," J. Opt. Soc. Am. B 30, 589-597 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]
  3. M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. OConnell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Implementing the quantum von Neumann architecture with superconducting circuits,” Science 334, 61–65 (2011). [CrossRef]
  4. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995). [CrossRef]
  5. J. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995). [CrossRef]
  6. I. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995). [CrossRef]
  7. A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett. 82, 1971–1974 (1999). [CrossRef]
  8. M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001). [CrossRef]
  9. T. Pittman, B. Jacobs, and J. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]
  10. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac–Zoller controlled-NOT quantum gate,” Nature 422, 408–411 (2003). [CrossRef]
  11. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [CrossRef]
  12. L. You, X. X. Yi, and X. H. Su, “Quantum logic between atoms inside a high-Q optical cavity,” Phys. Rev. A 67, 032308 (2003). [CrossRef]
  13. X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003). [CrossRef]
  14. L.-M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  15. X.-M. Lin, Z.-W. Zhou, M.-Y. Ye, Y.-F. Xiao, and G.-C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006). [CrossRef]
  16. X. Zou, S. Zhang, K. Li, and G. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007). [CrossRef]
  17. X. Zou, K. Li, and G. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate,” Phys. Rev. A 74, 044305 (2006). [CrossRef]
  18. Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity,” Phys. Rev. A 75, 054303 (2007). [CrossRef]
  19. Y. Xia, J. Song, Z.-B. Yang, and S.-B. Zheng, “Controlled implementation of two-photon controlled phase gate within a network,” Quantum Inf. Comput. 10, 0821–0828 (2010).
  20. K. Kieling, J. L. OBrien, and J. Eisert, “On photonic controlled phase gates,” New J. Phys. 12, 013003 (2010). [CrossRef]
  21. K. Lemr, a. Černoch, J. Soubusta, K. Kieling, J. Eisert, and M. Dušek, “Experimental implementation of the optimal linear-optical controlled phase gate,” Phys. Rev. Lett. 106, 013602 (2011). [CrossRef]
  22. M.-F. Wang, N.-Q. Jiang, Q.-L. Jin, and Y.-Z. Zheng, “Continuous-variable controlled-Z gate using an atomic ensemble,” Phys. Rev. A 83, 062339 (2011). [CrossRef]
  23. R. Ukai, S. Yokoyama, J.-i. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation,” Phys. Rev. Lett. 107, 250501 (2011). [CrossRef]
  24. X.-s. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” Opt. Express 19, 22723–22730 (2011). [CrossRef]
  25. Y. Q. Zhang, S. Zhang, K. H. Yeon, and S. C. Yu, “One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator,” J. Opt. Soc. Am. B 29, 300–304 (2012). [CrossRef]
  26. E. Nielsen, R. Muller, and M. Carroll, “Configuration interaction calculations of the controlled phase gate in double quantum dot qubits,” Phys. Rev. B 85, 035319 (2012). [CrossRef]
  27. P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  28. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012). [CrossRef]
  29. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  30. E. Knill, “Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics,” Phys. Rev. A 68, 064303 (2003). [CrossRef]
  31. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  32. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
  33. Y. Xia, J. Song, P.-M. Lu, and H.-S. Song, “Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity,” J. Phys. B 44, 025503 (2011). [CrossRef]
  34. X.-M. Xiu, L. Dong, Y.-J. Gao, and X. X. Yi, “Nearly deterministic controlled-not gate with weak cross-Kerr nonlinearities,” Quantum Inf. Comput. 12, 0159–0170 (2012).
  35. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  36. C. Weedbrook, S. Pirandola, R. Garca-Patrón, N. Cerf, T. Ralph, J. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012). [CrossRef]
  37. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
  38. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
  39. M. K. Simon, Probability Distributions Involving Gaussian Random Variables, a Handbook for Engineers, Scientists and Mathematicians (Springer, 2006).
  40. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005). [CrossRef]
  41. S. D. Barrett and G. J. Milburn, “Quantum-information processing via a lossy bus,” Phys. Rev. A 74, 060302(R) (2006). [CrossRef]
  42. B. He, J. Bergou, and Y. Ren, “Universal discriminator for completely unknown optical qubits,” Phys. Rev. A 76, 032301 (2007). [CrossRef]
  43. Y.-B. Sheng, F.-G. Deng, and H.-Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  44. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009). [CrossRef]
  45. B. He, Y. Ren, and J. Bergou, “Creation of high-quality long-distance entanglement with flexible resources,” Phys. Rev. A 79, 052323 (2009). [CrossRef]
  46. Y.-B. Sheng, F.-G. Deng, and G.-L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
  47. B. He, Y.-H. Ren, and J. A. Bergou, “Universal entangler with photon pairs in arbitrary states,” J. Phys. B 43, 025502 (2010). [CrossRef]
  48. C. Wang, Y. Zhang, and G.-S. Jin, “Polarization-entanglement purification and concentration using cross-kerr nonlinearity,” Quantum Inf. Comput. 11, 0988–1002 (2011).
  49. W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
  50. Y. Xia, J. Song, P.-M. Lu, and H.-S. Song, “Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons,” J. Appl. Phys. 109, 103111 (2011). [CrossRef]
  51. Q. Guo, J. Bai, L.-Y. Cheng, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Simplified optical quantum-information processing via weak cross-Kerr nonlinearities,” Phys. Rev. A 83, 054303 (2011). [CrossRef]
  52. F.-G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  53. Y.-B. Sheng, L. Zhou, S.-M. Zhao, and B.-Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  54. Y.-B. Sheng, L. Zhou, and S.-M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  55. X.-W. Wang, D.-Y. Zhang, S.-Q. Tang, L.-J. Xie, Z.-Y. Wang, and L.-M. Kuang, “Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity,” Phys. Rev. A 85, 052326 (2012). [CrossRef]
  56. X.-W. Wang, D.-Y. Zhang, S.-Q. Tang, and L.-J. Xie, “Nondestructive Greenberger–Horne–Zeilinger-state analyzer,” Quantum Inf. Process. 12, 1065–1075 (2013). [CrossRef]
  57. P. Kok, H. Lee, and J. Dowling, “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements,” Phys. Rev. A 66, 063814 (2002). [CrossRef]
  58. S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  59. D. Braje, V. Balić, G. Yin, and S. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  60. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005). [CrossRef]
  61. T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef]
  62. X. Li, P. Voss, J. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef]
  63. P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998). [CrossRef]
  64. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single-atom nonlinearity,” J. Opt. B 5, 218–221 (2003). [CrossRef]
  65. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef]
  66. H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81, 053829 (2010). [CrossRef]
  67. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010). [CrossRef]
  68. J. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]
  69. J. H. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16 (2007). [CrossRef]
  70. B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011). [CrossRef]
  71. A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011). [CrossRef]
  72. M. Siomau, A. A. Kamli, S. A. Moiseev, and B. C. Sanders, “Entanglement creation with negative index metamaterials,” Phys. Rev. A 85, 050303(R) (2012). [CrossRef]
  73. X.-M. Jin, J.-G. Ren, B. Yang, Z.-H. Yi, F. Zhou, X.-F. Xu, S.-K. Wang, D. Yang, Y.-F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C.-Z. Peng, and J.-W. Pan, “Experimental free-space quantum teleportation,” Nat. Photonics 4, 376–381 (2010). [CrossRef]
  74. S. Phoenix, “Wave-packet evolution in the damped oscillator,” Phys. Rev. A 41, 5132–5138 (1990). [CrossRef]
  75. H. Jeong, “Quantum computation using weak nonlinearities: robustness against decoherence,” Phys. Rev. A 73, 052320 (2006). [CrossRef]
  76. S. G. R. Louis, W. J. Munro, T. P. Spiller, and K. Nemoto, “Loss in hybrid qubit-bus couplings and gates,” Phys. Rev. A 78, 022326 (2008). [CrossRef]
  77. C. C. Gerry and T. Bui, “Quantum non-demolition measurement of photon number using weak nonlinearities,” Phys. Lett. A 372, 7101–7104 (2008). [CrossRef]
  78. X.-s. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited