OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 615–621

Multiple-beam interference in a spiral phase plate

Yisa S. Rumala and Aaron E. Leanhardt  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 615-621 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical transmission through a spiral phase plate is analyzed by treating the device as a Fabry–Perot etalon with an azimuthally varying thickness. The transmitted beam is calculated to contain a coherent superposition of optical vortices with different winding numbers. This yields an intensity profile with a periodic modulation as a function of azimuthal angle where the orientation rotates as a function of the laser frequency. These effects are quantified experimentally and theoretically.

© 2013 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.3160) Physical optics : Interference
(050.4865) Diffraction and gratings : Optical vortices
(080.4865) Geometric optics : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Diffraction and Gratings

Original Manuscript: October 18, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 7, 2013
Published: February 15, 2013

Yisa S. Rumala and Aaron E. Leanhardt, "Multiple-beam interference in a spiral phase plate," J. Opt. Soc. Am. B 30, 615-621 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Beth, “Direct detection of the angular momentum of light,” Phys. Rev. 48, 471 (1935). [CrossRef]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  4. S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). [CrossRef]
  5. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B 4, S7–S16 (2002). [CrossRef]
  6. D. L. Andrews, ed., Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008).
  7. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011).
  8. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  9. S. Franke-Arnold and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2, 299–313 (2008). [CrossRef]
  10. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011). [CrossRef]
  11. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003). [CrossRef]
  12. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  13. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef]
  14. R. Kanamoto, E. M. Wright, and P. Meystre, “Quantum dynamics of Raman-coupled Bose–Einstein condensates using Laguerre–Gaussian beams,” Phys. Rev. A 75, 063623 (2007). [CrossRef]
  15. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619–8625 (2007). [CrossRef]
  16. T. P. Simula, N. Nygaard, S. X. Hu, L. A. Collins, B. I. Schneider, and K. Mølmer, “Angular momentum exchange between coherent light and matter fields,” Phys. Rev. A 77, 015401 (2008). [CrossRef]
  17. K. C. Wright, L. S. Leslie, and N. P. Bigelow, “Optical control of the internal and external angular momentum of a Bose–Einstein condensate,” Phys. Rev. A 77, 041601 (2008). [CrossRef]
  18. K. C. Wright, L. S. Leslie, A. Hansen, and N. P. Bigelow, “Sculpting the vortex state of a spinor BEC,” Phys. Rev. Lett. 102, 030405 (2009). [CrossRef]
  19. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  20. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  21. S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92, 217901 (2004). [CrossRef]
  22. A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72, 052114 (2005). [CrossRef]
  23. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95, 240501 (2005). [CrossRef]
  24. Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matter waves,” Phys. Rev. Lett. 93, 193602 (2004). [CrossRef]
  25. K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary, counter-rotating, coherent superpositions in Bose–Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95, 173601 (2005). [CrossRef]
  26. S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77, 053825 (2008). [CrossRef]
  27. J. M. Vaughan and D. V. Willetts, “Temporal and interference fringe analysis of TEM01 laser modes,” J. Opt. Soc. Am. 73, 1018–1021 (1983). [CrossRef]
  28. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  29. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  30. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951–S962 (1992). [CrossRef]
  31. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  32. S. van Enk and G. Nienhuis, “Eigenfunction description of laser beams and orbital angular momentum of light,” Opt. Commun. 94, 147–158 (1992). [CrossRef]
  33. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  34. M. J. Padgett and L. Allen, “Orbital angular momentum exchange in cylindrical-lens mode converters,” J. Opt. B 4, S17–S19 (2002). [CrossRef]
  35. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  36. F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. D. Maker, “Transverse modes, vortices and vertical-cavity surface-emitting Lasers,” Chaos, Solitons & Fractals 4, 1575–1596 (1994).
  37. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  38. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43, 688–694 (2004). [CrossRef]
  39. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]
  40. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 13101 (2012). [CrossRef]
  41. A. E. Siegman, Lasers (University Science Books, 1986).
  42. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  43. M. A. Rob, “Limitation of a wedge etalon for high resolution linewidth measurements,” Opt. Lett. 15, 604–606 (1990). [CrossRef]
  44. M. Dobosz and M. Kozuchowski, “Frequency stabilization of a diode by means of an optical wedge,” Meas. Sci. Technol. 23, 035202 (2012). [CrossRef]
  45. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).
  46. The angle between the two surfaces of the spiral phase plate depends on radial position: tan(θ(r))=Δh/2πr. The surfaces are approximately parallel, i.e., θ(r)≪1, for r≫Δh, where Δh∼O(λ). For r≤O(λ), fabrication limitations often cause the actual thickness profile of the spiral phase plate to deviate from the ideal profile in Eq. (1). Accordingly, θ(r)≪1 over the same area where Eq. (1) accurately represents the surface of the device.
  47. S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. Padgett, “Uncertainty principle for angular position and angular momentum,” New J. Phys. 6, 103 (2004). [CrossRef]
  48. E. Yao, S. Franke-Arnold, J. Courtial, S. Barnett, and M. Padgett, “Fourier relationship between angular position and optical orbital angular momentum,” Opt. Express 14, 9071–9076 (2006). [CrossRef]
  49. B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10, 103013 (2008). [CrossRef]
  50. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A 6, 259–268(2004). [CrossRef]
  51. J. B. Götte, S. Franke-Arnold, R. Zambrini, and S. M. Barnett, “Quantum formulation of fractional orbital angular momentum,” J. Mod. Opt. 54, 1723–1738 (2007). [CrossRef]
  52. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16, 993–1006 (2008). [CrossRef]
  53. Spiral phase plates are purchased from RPC Photonics, www.rpcphotonics.com. The refractive index is calculated from the dispersion equation of the material used to manufacture the spiral phase plate, and its uncertainty is calculated from the wavelength dependence of the dispersion equation. The spiral step height with uncertainty are experimentally measured values by RPC Photonics. The thickness of the glass substrate and its uncertainty is provided by RPC Photonics. The coefficient of thermal expansion and the thermal coefficient of the refractive index is also provided by RPC Photonics.
  54. Y. S. Rumala, “A new etalon geometry: the spiral phase plate etalon,” Ph.D. thesis (University of Michigan, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited