OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 626–630

Three-dimensional nanofocusing of light through surface plasmon scattering by a lump-like defect in metal/dielectric/metal slot waveguides

Alexander A. Zharov, Nina A. Zharova, Daria A. Smirnova, and Alexander A. Zharov, Jr.  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 626-630 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that scattering of a surface plasmon by lump-like defects on the walls of a metal/dielectric/metal slot waveguide may be accompanied by 3D nanofocusing of light. Such nanofocusing results in the emergence of “hot spots” of nanometer size with a field intensity several orders higher than in the incident plasmon. This effect takes place only if the lump size is smaller than some critical value. We also demonstrate that a so-called plasmonic “black hole” can concentrate electromagnetic energy as well. We believe that the effect of plasmon nanofocusing may be used for plasmonic nanosensing or subwavelength microscopy.

© 2013 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(290.5825) Scattering : Scattering theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: November 29, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 16, 2013
Published: February 15, 2013

Alexander A. Zharov, Nina A. Zharova, Daria A. Smirnova, and Alexander A. Zharov, "Three-dimensional nanofocusing of light through surface plasmon scattering by a lump-like defect in metal/dielectric/metal slot waveguides," J. Opt. Soc. Am. B 30, 626-630 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. P. Kaminov, W. L. Mammel, and H. P. Weber, “Metal-clad waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974). [CrossRef]
  2. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer-Verlag, 2007).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  4. L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009). [CrossRef]
  5. A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007). [CrossRef]
  6. S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009). [CrossRef]
  7. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  8. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef]
  9. V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010). [CrossRef]
  10. D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photonics 4, 3–5 (2010). [CrossRef]
  11. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007). [CrossRef]
  12. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005). [CrossRef]
  13. W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011). [CrossRef]
  14. D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012). [CrossRef]
  15. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Manipulating energy flow in variable-gap plasmonic waveguides,” Opt. Lett. 37, 5151–5153 (2012). [CrossRef]
  16. A. R. Davoyan, I. V. Shadrivov, Y. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010). [CrossRef]
  17. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010). [CrossRef]
  18. A. E. Klein, A. Minovich, M. Steinert, N. Janunts, A. Tunnermann, D. Neshev, Y. S. Kivshar, and T. Pertsch, “Controlling plasmonic hot spots by interfering Airy beams,” Opt. Lett. 37, 3402–3404 (2012). [CrossRef]
  19. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977). [CrossRef]
  20. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006). [CrossRef]
  21. S. I. Bozhevolnyi and K. V. Nerkararyan, “Channel plasmon polaritons guided by graded gaps: closed-form solutions,” Opt. Express 17, 10327 (2009). [CrossRef]
  22. K. V. Nerkararyan, S. K. Nerkararyan, and S. I. Bozhevolnyi, “Plasmonic black hole: broadband omnidirectional absorber of the gap surface plasmons,” Opt. Lett. 36, 4311–4313 (2011). [CrossRef]
  23. In the calculations, the other set of parameters was used to implement the condition (10): εD=11 (GaAs), aL=15  nm, ν/ω=0.14. For these parameters, the critical value of the radius is Lc=2  μm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited