OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 631–640

Intracavity trace molecular detection with a broadband mid-IR frequency comb source

Magnus W. Haakestad, Tobias P. Lamour, Nick Leindecker, Alireza Marandi, and Konstantin L. Vodopyanov  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 631-640 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrasensitive detection of methane, isotopic carbon dioxide, carbon monoxide, formaldehyde, acetylene, and ethylene is performed in the spectral range 2.5–5 μm using intracavity spectroscopy in broadband optical parametric oscillators (OPOs). The OPOs were operated near degeneracy and synchronously pumped either by a mode-locked erbium (1560 nm) or thulium (2050 nm) fiber laser. A large instantaneous bandwidth of up to 800cm1 allows for simultaneous detection of several gases. We observe an effective path-length enhancement due to coherent interaction inside the OPO cavity and achieve part-per-billion sensitivity levels. The measured spectral shapes are in good agreement with a model that takes into account group delay dispersion across the broad OPO frequency band.

© 2013 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:

Original Manuscript: December 3, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 18, 2013
Published: February 15, 2013

Magnus W. Haakestad, Tobias P. Lamour, Nick Leindecker, Alireza Marandi, and Konstantin L. Vodopyanov, "Intracavity trace molecular detection with a broadband mid-IR frequency comb source," J. Opt. Soc. Am. B 30, 631-640 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Esler, D. W. T. Griffith, S. R. Wilson, and L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air,” Anal. Chem. 72, 206–215 (2000). [CrossRef]
  2. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005). [CrossRef]
  3. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008). [CrossRef]
  4. D. D. Arslanov, K. Swinkels, S. M. Cristescu, and F. J. M. Harren, “Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy,” Opt. Express 19, 24078–24089 (2011). [CrossRef]
  5. T. H. Risby and F. K. Tittel, “Current status of mid-infrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010). [CrossRef]
  6. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010). [CrossRef]
  7. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007). [CrossRef]
  8. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007). [CrossRef]
  9. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009). [CrossRef]
  10. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544(2004). [CrossRef]
  11. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008). [CrossRef]
  12. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009). [CrossRef]
  13. X. D. D. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, “Cavity enhanced FTIR spectroscopy using femto OPO absorption source,” Mol. Phys. 109, 2173–2179 (2011). [CrossRef]
  14. A. Foltynowicz, P. Masłowski, A. Fleisher, B. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B1–13 (2012). [CrossRef]
  15. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A 7, S408–S414 (2005). [CrossRef]
  16. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009). [CrossRef]
  17. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18, 21861–21872 (2010). [CrossRef]
  18. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011). [CrossRef]
  19. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012). [CrossRef]
  20. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999). [CrossRef]
  21. W. Brunner and H. Paul, “The optical parametric oscillator as a means for intracavity absorption spectroscopy,” Opt. Commun. 19, 253–256 (1976). [CrossRef]
  22. K.-J. Boller, and T. Schröder, “Demonstration of broadband intracavity spectroscopy in a pulsed optical parametric oscillator made of β-barium borate,” J. Opt. Soc. Am. B 10, 1778–1784 (1993). [CrossRef]
  23. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011). [CrossRef]
  24. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett 36, 2275–2277 (2011). [CrossRef]
  25. V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010). [CrossRef]
  26. A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20, 7255–7262 (2012). [CrossRef]
  27. W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer, 2003).
  28. “The HITRAN database,” http://www.cfa.harvard.edu/HITRAN/ .
  29. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999). [CrossRef]
  30. M. W. Haakestad, N. Leindecker, A. Marandi, J. Jiang, I. Hartl, M. Fermann, and K. L. Vodopyanov, “Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2012), paper CF2C.2.
  31. “Wikipedia,” http://en.wikipedia.org/ .
  32. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27, 876–882 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited