OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 663–677

Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide

Laura Agazzi, Kerstin Wörhoff, Andreas Kahn, Matthias Fechner, Günter Huber, and Markus Pollnau  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 663-677 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectroscopic study of the population mechanisms in erbium-doped amorphous aluminum oxide up to the H11/22/S3/24 levels is performed. Via luminescence decay measurements, absorption and emission spectra, and a Judd–Ofelt analysis, we determine luminescence lifetimes, radiative and nonradiative decay-rate constants, and branching ratios of the Er3+ intermanifold transitions. With a continuous-wave pump-probe technique, the excited-state absorption (ESA) spectrum is recorded between 900 and 1800 nm and the cross sections of the ESA transitions I13/24I9/24, I13/24F9/24, and I11/24F7/24 are determined. The microparameters and efficiencies of resonant and phonon-assisted energy-migration and energy-transfer upconversion (ETU) processes among Er3+ ions occurring from the first and second excited states are evaluated. From the ratio of the S3/24 and F9/24 luminescence intensities as a function of Er3+ concentration, we prove the existence and quantify the macroscopic ETU coefficient of the two-phonon-assisted ETU process (I13/24,I11/24)(I15/24,F9/24).

© 2013 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(130.2755) Integrated optics : Glass waveguides

ToC Category:

Original Manuscript: September 5, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: December 26, 2012
Published: February 21, 2013

Laura Agazzi, Kerstin Wörhoff, Andreas Kahn, Matthias Fechner, Günter Huber, and Markus Pollnau, "Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide," J. Opt. Soc. Am. B 30, 663-677 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54, 404–410 (1992). [CrossRef]
  2. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004). [CrossRef]
  3. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: investigations on the example of amorphous Al2O3:Er3+,” submitted to J. Phys. Chem. C.
  4. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996). [CrossRef]
  5. F. Qian, Q. Song, E.-K. Tien, S. K. Kalyoncu, Y. Huang, and O. Boyraz, “Effects of design geometries and nonlinear losses on gain in silicon waveguides with erbium-doped regions,” IEEE J. Quantum Electron. 47, 327–334 (2011). [CrossRef]
  6. P. Le Boulanger, J.-L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999). [CrossRef]
  7. L. Fornasiero, K. Petermann, E. Heumann, and G. Huber, “Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 μm,” Opt. Mater. 10, 9–17 (1998). [CrossRef]
  8. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403(1991). [CrossRef]
  9. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000). [CrossRef]
  10. S. A. Pollack, D. B. Chang, and N. L. Moise, “Upconversion-pumped infrared erbium laser,” J. Appl. Phys. 60, 4077–4086 (1986). [CrossRef]
  11. S. A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2 and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988). [CrossRef]
  12. P. Xie and S. C. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15, 848–850 (1990). [CrossRef]
  13. M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3 μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994). [CrossRef]
  14. C. Labbe, J.-L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002). [CrossRef]
  15. P. E. A. Mobert, A. Diening, E. Heumann, G. Huber, and B. H. T. Chai, “Room-temperature continuous-wave upconversion-pumped laser emission in Ho, Yb:KYF4 at 756, 1070, and 1390 nm,” Laser Phys. 8, 210–213 (1998).
  16. R. Balda, A. J. Garcia-Adeva, J. Fernández, and J. M. Fdez-Navarro, “Infrared-to-visible upconversion of Er3+ ions in GeO2-PbO-Nb2O5 glasses,” J. Opt. Soc. Am. B 21, 744–752 (2004). [CrossRef]
  17. S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+ doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60, 162–178 (1999). [CrossRef]
  18. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4 dB optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009). [CrossRef]
  19. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007). [CrossRef]
  20. J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, “Excited-state absorption and energy-transfer in Er3+ doped LiYF4,” J. Lumin. 36, 39–47 (1986). [CrossRef]
  21. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  22. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  23. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC, 1996).
  24. W. T. Carnall, P. R. Fields, and R. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424–4442 (1968). [CrossRef]
  25. N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32, 1577–1586 (1972). [CrossRef]
  26. H. Schober, D. Strauch, and B. Dorner, “Lattice dynamics of sapphire (Al2O3),” Z. Phys. B 92, 273–283 (1993). [CrossRef]
  27. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995). [CrossRef]
  28. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2  dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010). [CrossRef]
  29. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited state absorption at 980 nm in erbium doped glass,” Proc. SPIE 1581, 72–79 (1991). [CrossRef]
  30. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55–75 (1948). [CrossRef]
  31. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  32. F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976). [CrossRef]
  33. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964). [CrossRef]
  34. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000). [CrossRef]
  35. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993). [CrossRef]
  36. H. T. Amorim, M. T. de Araujo, E. A. Gouveia, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Infrared to visible frequency up-conversion fluorescence spectroscopy in Er3+-doped chalcogenide glass,” J. Lumin. 78, 271–277 (1998). [CrossRef]
  37. I. R. Martın, P. Velez, V. D. Rodrıguez, U. R. Rodrıguez-Mendoza, and V. Lavin, “Upconversion dynamics in Er3+-doped fluoroindate glasses,” Spectrochim. Acta 55, 935–940 (1999). [CrossRef]
  38. G. Qin, J. Lu, J. F. Bisson, Y. Feng, and K. Ueda, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132, 103–106 (2004). [CrossRef]
  39. M. Pollnau, C. Ghisler, W. Lüthy, and H. P. Weber, “Cross sections of excited-state absorption at 800 nm in erbium-doped ZBLAN fiber,” Appl. Phys. B 67, 23–28 (1998). [CrossRef]
  40. PhoeniX, http://www.phoenixbv.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited