OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 678–686

Efficient W-state entanglement concentration using quantum-dot and optical microcavities

Yu-Bo Sheng and Lan Zhou  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 678-686 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000678


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an entanglement concentration protocol (ECP) for the less-entangled W-state with quantum-dot and microcavity coupled systems. The present protocol uses quantum nondemolition measurement on the spin parity to construct the hybrid parity check gate. Different from other ECPs, the less-entangled W-state with quantum-dot and microcavity coupled systems can be concentrated with the help of some single photons. The most significant advantage is that during the whole ECP, we do not destroy the W-state and only consume some local single photons. The whole protocol can be repeated to obtain a higher success probability. It may be useful in current quantum information processing.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 6, 2012
Revised Manuscript: December 17, 2012
Manuscript Accepted: January 15, 2013
Published: February 21, 2013

Citation
Yu-Bo Sheng and Lan Zhou, "Efficient W-state entanglement concentration using quantum-dot and optical microcavities," J. Opt. Soc. Am. B 30, 678-686 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-678


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
  5. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  6. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  7. C. H. Bennett, G. B. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  8. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  9. G.-L. Long and X.-S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  10. F.-G. Deng, G.-L. Long, and X.-S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  11. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 042305 (2005). [CrossRef]
  12. R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999). [CrossRef]
  13. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
  14. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  15. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  16. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
  17. L. Xiao, G.-L. Long, F.-G. Deng, and J.-W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  18. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
  19. L. M. Duan, M. D. Lukin, J. T. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001). [CrossRef]
  20. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  21. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev A 60, 194–197 (1999). [CrossRef]
  22. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  23. N. Paunković, Y. Omar, S. Bose, and V. Vedral, “Entanglement concentration using quantum statistics,” Phys. Rev. Lett. 88, 187903 (2002). [CrossRef]
  24. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  25. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  26. X.-B. Wang and H. Fan, “Entanglement concentration by ordinary linear optical devices without postselection,” Phys. Rev. A 68, 060302 (2003). [CrossRef]
  27. Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
  28. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
  29. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008). [CrossRef]
  30. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  31. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  32. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).
  33. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement concentration for electrons with charge detection,” Phys. Lett. A 373, 1823–1825 (2009). [CrossRef]
  34. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  35. W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
  36. L. Zhou, Y. B. Sheng, W. W. Cheng, G. L. Yan, and S. M. Zhao, “Efficient entanglement concentration for arbitrary less-entangled NOON states,” Quantum Inf. Process. 12, 1307–1320 (2013). [CrossRef]
  37. Z. L. Cao and M. Yang, “Entanglement distillation for three-particle W class states,” J. Phys. B 36, 4245–4253 (2003). [CrossRef]
  38. L. H. Zhang, M. Yang, and Z. L. Cao, “Entanglement concentration for unknown W class states,” Phys. A 374, 611–616 (2007). [CrossRef]
  39. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W-states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
  40. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled threephoton W-states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
  41. H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, “Scheme for entanglement concentration of unkonwn partially entangled three-atom W-states in cavity QED,” Quantum Inf. Process. 11, 431–441 (2012). [CrossRef]
  42. A. Yildiz, “Optimal distillation of three-qubit W-states,” Phys. Rev. A 82, 012317 (2010). [CrossRef]
  43. B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W-states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012). [CrossRef]
  44. F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W-state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012). [CrossRef]
  45. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W-states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  46. L. Zhou, “Efficient entanglement concentration for electron-spin W-state with the charge detection,” Quantum Inf. Process., doi:10.1007/s11128-012-0511-7 (2012). [CrossRef]
  47. L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, “Efficient entanglement concentration for arbitrary single-photon multimode W-state,” J. Opt. Soc. Am. B 30, 71–78 (2013). [CrossRef]
  48. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]
  49. C. Y. Hu, W. J. Munro, J. L. ÓBrien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009). [CrossRef]
  50. C. Y. Hu, A. Young, J. L. ÓBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]
  51. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011). [CrossRef]
  52. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]
  53. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685–25689 (2011). [CrossRef]
  54. C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A 86, 012323 (2012). [CrossRef]
  55. Y. B. Sheng, L. Zhou, L. Wang, and S. M. Zhao, “Efficient entanglement concentration for quantum dot and optical microcavities systems,” Quantum. Inf. Process., doi:10.1007/s11128-012-0502-8 (2012). [CrossRef]
  56. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012). [CrossRef]
  57. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24667 (2012). [CrossRef]
  58. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012). [CrossRef]
  59. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  60. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008). [CrossRef]
  61. A. Greilich, S. E. Economou, S. Spatzek, D. R. yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nat. Phys. 5, 262–266 (2009). [CrossRef]
  62. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72(2009). [CrossRef]
  63. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kronere, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London) 451, 441–444 (2008). [CrossRef]
  64. D. Press, L. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4, 367–370 (2010). [CrossRef]
  65. M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited