OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 687–690

Reversible storage of photon entanglement in thermal atomic ensembles

Tianhui Qiu, Guojian Yang, and Min Xie  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 687-690 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the storage and retrieval of photon entanglement based on electromagnetically induced transparency where atomic thermal motion cannot be neglected. The reversible transfer of entanglement between atomic ensembles and photon modes is described in terms of the dark state generalized to a mixture of entangled collective moving atoms and entangled photon modes. We analyze the retrieval ability of photon entanglement from atomic ensembles with inhomogeneous broadening and find that the scheme in the degenerated and resonant light–atom configuration is almost immune to atomic thermal motion.

© 2013 Optical Society of America

OCIS Codes
(210.4680) Optical data storage : Optical memories
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: January 7, 2013
Manuscript Accepted: January 11, 2013
Published: February 22, 2013

Tianhui Qiu, Guojian Yang, and Min Xie, "Reversible storage of photon entanglement in thermal atomic ensembles," J. Opt. Soc. Am. B 30, 687-690 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Clauser and A. Shimony, “Bell’s theorem: experimental tests and implications,” Rep. Prog. Phys. 41, 1881–1927 (1978). [CrossRef]
  2. P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. Cirac, D. Deutsch, F. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoyen, S. Kroll, G. Leuchs, M. Lewenstein, D. Loss, N. Lutkenhaus, S. Massar, J. Mooii, M. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, “Quantum information processing and communication. Strategic report on current status, visions and goals for research in Europe,” Eur. Phys. J. D 36, 203–228 (2005). [CrossRef]
  3. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef]
  4. B. Juulsgaard, A. Kozhehin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001). [CrossRef]
  5. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  6. D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of remote atomic qubits,” Phys. Rev. Lett. 96, 030405 (2006). [CrossRef]
  7. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]
  8. S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk, and H. J. Kimble, “Characterization of multipartite entanglement for one photon shared among four optical modes,” Science 324, 764–768 (2009). [CrossRef]
  9. C. H. Yuan, L. Q. Chen, and W. P. Zhang, “Storage of polarization-encoded cluster states in an atomic system,” Phys. Rev. A 79, 052342 (2009). [CrossRef]
  10. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734(2010). [CrossRef]
  11. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805(2002). [CrossRef]
  12. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007). [CrossRef]
  13. S. W. Su, Y. H. Chen, S. C. Gou, T. L. Hong, and I. A. Yu, “Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: a numerical approach,” Phys. Rev. A 83, 013827 (2011). [CrossRef]
  14. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef]
  15. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314(2002). [CrossRef]
  16. G. J. Yang, T. H. Qiu, K. G. Wang, and M. Xie, “Reversible storage of a weak light pulse in a thermal atomic medium,” Phys. Rev. A 81, 063817 (2010). [CrossRef]
  17. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  18. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009). [CrossRef]
  19. F. Casagrande, A. Lulli, and M. Paris, “Dynamics of entanglement transfer from radiation modes to localized qubits,” Eur. Phys. J. ST 160, 71–81 (2008). [CrossRef]
  20. H. Sun, H. Guo, Y. F. Bai, D. A. Han, S. L. Fan, and X. Z. Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68–75 (2005). [CrossRef]
  21. G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A 68, 063816 (2003). [CrossRef]
  22. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited