## Dynamical quantum theory of heat transfer between plasmonic nanosystems |

JOSA B, Vol. 30, Issue 3, pp. 700-707 (2013)

http://dx.doi.org/10.1364/JOSAB.30.000700

Enhanced HTML Acrobat PDF (393 KB)

### Abstract

We develop a dynamical theory of heat transfer between two nanosystems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics toward the steady state and establish connection with the standard theory of heat transfer in the steady state. For strongly coupled nanoparticles, we predict Rabi oscillations in the mean occupation number of surface plasmons in each nanoparticle.

© 2013 Optical Society of America

**OCIS Codes**

(240.6680) Optics at surfaces : Surface plasmons

(270.0270) Quantum optics : Quantum optics

(270.1670) Quantum optics : Coherent optical effects

(290.6815) Scattering : Thermal emission

**ToC Category:**

Optics at Surfaces

**History**

Original Manuscript: November 20, 2012

Revised Manuscript: January 14, 2013

Manuscript Accepted: January 16, 2013

Published: February 22, 2013

**Citation**

Svend-Age Biehs and Girish S. Agarwal, "Dynamical quantum theory of heat transfer between plasmonic nanosystems," J. Opt. Soc. Am. B **30**, 700-707 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-700

Sort: Year | Journal | Reset

### References

- P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Gerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in J-aggregate/metal hybrid nanostructures,” Nat. Photonics (2013). [CrossRef]
- A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983). [CrossRef]
- S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer, 1989), Vol. 3.
- W. Eckhardt, “Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer,” Phys. Rev. A 29, 1991–2003 (1984). [CrossRef]
- G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975). [CrossRef]
- E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Sov. Phys. JETP 2, 73–83 (1956).
- D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971). [CrossRef]
- M. Tschikin, S.-A. Biehs, P. Ben-Abdallah, and F. S. S. Rosa, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233–240 (2012). [CrossRef]
- M. Janowicz, D. Reddig, and M. Holthaus, “Quantum approach to electromagnetic energy transfer between two dielectric bodies,” Phys. Rev. A 68, 043823 (2003). [CrossRef]
- G. Domingues, S. Volz, K. Joulain, and J.-J. Greffet, “Heat Transfer between two nanoparticles through near field interaction,” Phys. Rev. Lett. 94, 085901 (2005). [CrossRef]
- P.-O. Chapuis, M. Laroche, S. Volz, and J.-J. Greffet, “Radiative heat transfer between metallic nanoparticles,” Appl. Phys. Lett. 92, 201906 (2008). [CrossRef]
- P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B 73, 155423 (2006). [CrossRef]
- A. Manjavacas, and F. J. García de Abajo, “Radiative heat transfer between neighboring particles,” Phys. Rev. B 86, 075466 (2012). [CrossRef]
- A. Pérez-Madrid, J. M. Rubí, and L. C. Lapas, “Heat transfer between nanoparticles: thermal conductance for near-field interactions,” Phys. Rev. B 77, 155417 (2008). [CrossRef]
- A. Pérez-Madrid, L. C. Lapas, and J. M. Rubí, “Heat exchange between two interacting nanoparticles beyond the fluctuation-dissipation regime,” Phys. Rev. Lett. 103, 048301 (2009). [CrossRef]
- P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-body radiative heat transfer theory,” Phys. Rev. Lett. 107, 114301 (2011). [CrossRef]
- A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63, 205404 (2001). [CrossRef]
- G. V. Dedkov and A. A. Kyasov, “On the radiative heat exchange between spherical particles at small distances,” Europhys. Lett. 93, 34001 (2011). [CrossRef]
- J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley-Interscience, 2007).
- S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University, 2012).
- G. S. Agarwal, Quantum Optics (Cambridge University, 2012).
- R. Loudon, The Quantum Theory of Light (Oxford University, 2000).
- T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009). [CrossRef]
- A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011). [CrossRef]
- L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).
- C. Sönnichsen, Plasmons in metal nanostructures, Ph.D. thesis (Ludwig-Maximilians-University of Munich, 2001).
- P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.