OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 717–722

Optofluidic photonic crystal slow light coupler

Mehdi Hosseinpour, Majid Ebnali-Heidari, Mehdi Kamali, and Hossein Emami  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 717-722 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000717


View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multifluid infiltrated input/output coupler for efficient light transmission from a slow light hole-type hexagonal photonic crystal waveguide (PCW) was designed based on the optofluidic technique. The structure of the coupler is similar to a regular PCW, with a little difference in the two innermost rows, which are filled with different fluids. This coupler allows light to experience a step-by-step change in its group velocity as it reaches and passes the central slow light PCW. Simulation results reveal a transmission improvement of more than 75% with the use of a three-fluid infiltrated coupler compared to a conventional PCW, in which the light is inserted directly to the slow light PCW, with a transmission efficiency of about 10%.

© 2013 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.5296) Integrated optics : Photonic crystal waveguides
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Photonic Crystals

History
Original Manuscript: November 21, 2012
Manuscript Accepted: January 9, 2013
Published: February 27, 2013

Citation
Mehdi Hosseinpour, Majid Ebnali-Heidari, Mehdi Kamali, and Hossein Emami, "Optofluidic photonic crystal slow light coupler," J. Opt. Soc. Am. B 30, 717-722 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-717


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  3. C. M. de Sterke, K. Dossou, T. White, L. Botten, and R. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17, 17338–17343 (2009). [CrossRef]
  4. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008). [CrossRef]
  5. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010). [CrossRef]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  7. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  8. R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010). [CrossRef]
  9. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  10. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  11. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  12. M. Settle, R. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007). [CrossRef]
  13. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007). [CrossRef]
  14. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef]
  15. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006). [CrossRef]
  16. J. Hugonin, P. Lalanne, T. White, and T. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007). [CrossRef]
  17. P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007). [CrossRef]
  18. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  19. C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  20. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  21. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004). [CrossRef]
  22. B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004). [CrossRef]
  23. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006). [CrossRef]
  24. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006). [CrossRef]
  25. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, and S. Madden, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  26. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17, 18340–18353 (2009). [CrossRef]
  27. M. Bitarafan, M. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration,” Appl. Opt. 50, 2622–2627 (2011). [CrossRef]
  28. S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach–Zehnder interferometer,” Appl. Opt. 51, 2687–2692 (2012). [CrossRef]
  29. F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch, “Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures,” Appl. Opt. 51, 568–576 (2012). [CrossRef]
  30. P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic crystals,” IEEE J. Quantum Electron. 40, 541–550 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited