OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 730–735

Non-steady-state photoelectromotive force induced by a vibrating Ronchi grating: manifestation of a fractal structure

Nikolai Korneev, Ponciano Rodriguez-Montero, and Svetlana Mansurova  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 730-735 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the non-steady-state photoelectromotive force induced by a vibrating Ronchi grating has a very complicated but deterministic dependence on the propagation distance. The characteristic minima of this dependence are found at fractional values of the Talbot distance, and their width is determined by the maximal transversal spatial frequency resolved by the system. This permits high accuracy in the determination of the Talbot distance.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(160.5140) Materials : Photoconductive materials
(120.1088) Instrumentation, measurement, and metrology : Adaptive interferometry

ToC Category:
Diffraction and Gratings

Original Manuscript: December 5, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 16, 2013
Published: February 27, 2013

Nikolai Korneev, Ponciano Rodriguez-Montero, and Svetlana Mansurova, "Non-steady-state photoelectromotive force induced by a vibrating Ronchi grating: manifestation of a fractal structure," J. Opt. Soc. Am. B 30, 730-735 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401–407 (1836). [CrossRef]
  2. Lord Rayleigh, “On copying diffraction gratings, and on some phenomena connected therewith,” Philos. Mag. 11, 196–201 (1881). [CrossRef]
  3. K. Patorsky, “The self-imaging phenomenon and its applications,” in Vol. 27 of Progress in Optics, E. Wolf, ed., (North Holland, 1989), pp. 1–108.
  4. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996). [CrossRef]
  5. W. B. Case, M. T. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot–Lau configurations,” Opt. Express 17, 20966–20974 (2009). [CrossRef]
  6. M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, “Observation of fractional revivals of a molecular wavepackets,” Phys. Rev. A 54, R3740 (1996). [CrossRef]
  7. J. A. Yeazell and C. R. Stroud, “Observation of fractional revivals in the evolution of a Rydberg atomic wave packet,” Phys. Rev A 43, 5153–5156 (1991). [CrossRef]
  8. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990). [CrossRef]
  9. S. Stepanov, “Photo-electromotive force in semiconductors,” In Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, ed., (Academic, 2001), Vol. 2, pp. 205–272.
  10. S. Stepanov, P. Rodriguez, S. Mansurova, M. L. Arroyo, S. Trivedi, and C. C. Wang, “Wavelength dependence of the photo-electromotive-force effect in CdTe:V crystal with bipolar photoconductivity,” Opt. Mater. 29, 623–630 (2007). [CrossRef]
  11. S. Stepanov, P. Rodriguez, S. Trivedi, and C. C. Wang, “Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector,” Appl. Phys. Lett. 84, 446–448 (2004). [CrossRef]
  12. N. Korneev, P. Rodriguez, and S. Stepanov, “2D pattern matching with adaptive photodetectors,” Opt. Commun. 134, 514–520 (1997). [CrossRef]
  13. Y. Ding, I. Lahiri, D. Nolte, G. J. Dunning, and D. M. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive force detector,” J. Opt. Soc. Am. B 15, 2013–2017 (1998). [CrossRef]
  14. M. L. Arroyo-Carrasco, P. Rodriguez-Montero, and S. Stepanov, “Measurement of the coherence length of diffusely scattered laser beams with adaptive photodetectors,” Opt. Commun. 157, 105–110 (1998). [CrossRef]
  15. P. Rodríguez-Montero, C. M. Gómez-Sarabia, and J. Ojeda-Castañeda, “Adaptive photodetector for assisted Talbot effect,” Appl. Opt. 47, 3778–3783 (2008). [CrossRef]
  16. A. W. Lohmann and D. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971). [CrossRef]
  17. Y. Nakano and K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Appl. Opt. 24, 3162–3166 (1985). [CrossRef]
  18. M. P. Kothiyal and R. S. Sirohi, “Improved collimation testing using Talbot interferometry,” Appl. Opt. 26, 4056–4057 (1987). [CrossRef]
  19. M. Tebaldi, G. Forte, R. Torroba, N. Bolognini, and A. Tagliaferri, “Self-imaging pitch variation applied to focal length digital measurements,” Opt. Commun. 250, 10–15 (2005). [CrossRef]
  20. P. Chavel and T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl. Opt. 23, 862–871(1984). [CrossRef]
  21. G. Schirripa Spagnolo, D. Ambrosini, and D. Paoleti, “Displacement measurement using the Talbot effect with a Ronchi grating,” J. Opt. A. 4, S376–S380 (2002). [CrossRef]
  22. S. Prakash, S. Upadhyay, and C. Shakher, “Real time out-of-plane vibration measurement/monitoring using Talbot interferometry,” Opt. Lasers Eng. 34, 251–259 (2000). [CrossRef]
  23. C.-F. Kao and M.-H. Lu, “Optical encoder based on the fractional Talbot effect,” Opt. Commun. 250, 16–23 (2005). [CrossRef]
  24. W. Gautschi, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I. A. Stegun, eds., (National Bureau of Standards, 1972), Chap. 7.3.
  25. R. Torroba, N. Bolognini, M. Tebaldi, and A. Tagliaferri, “Positioning method based on digital Moiré,” Opt. Commun. 209, 1–6 (2002). [CrossRef]
  26. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  27. H. L. Kung, A. Bhatnagar, and D. A. B. Miller, “Transform spectrometer based on measuring the periodicity of Talbot self-images,” Opt. Lett. 26, 1645–1647 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited