OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 736–742

Coupled-mode theory analysis of optical forces between longitudinally shifted periodic waveguides

Yue Sun, Thomas P. White, and Andrey A. Sukhorukov  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 736-742 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000736


View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a coupled-mode theory that describes the dependence of optical gradient forces between side-coupled periodic waveguides on the longitudinal shift between the waveguides. Our approach is fully applicable to waveguides with a strong refractive-index modulation and in the regime of slow-light enhancement of optical forces, associated with the group-velocity reduction at the photonic band edge. Our method enables fast calculation of both the transverse and longitudinal forces for all longitudinal shifts, based on numerical simulations of mode profiles only at particular shift values. We perform a comparison with direct numerical simulations for photonic-crystal nanowire waveguides and demonstrate that our approach provides very accurate results for the slow-light enhanced transverse and longitudinal forces, accounting for the key features of force suppression and sign reversal at critical shift values.

© 2013 Optical Society of America

OCIS Codes
(200.4880) Optics in computing : Optomechanics
(230.7370) Optical devices : Waveguides
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: November 21, 2012
Revised Manuscript: January 21, 2013
Manuscript Accepted: January 21, 2013
Published: February 28, 2013

Citation
Yue Sun, Thomas P. White, and Andrey A. Sukhorukov, "Coupled-mode theory analysis of optical forces between longitudinally shifted periodic waveguides," J. Opt. Soc. Am. B 30, 736-742 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009). [CrossRef]
  2. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4, 510–513 (2009). [CrossRef]
  3. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef]
  4. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011). [CrossRef]
  5. J. Ma and M. L. Povinelli, “Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate,” Appl. Phys. Lett. 97, 151102 (2010). [CrossRef]
  6. A. Oskooi, P. A. Favuzzi, Y. Kawakami, and S. Noda, “Tailoring repulsive optical forces in nanophotonic waveguides,” Opt. Lett. 36, 4638–4640 (2011). [CrossRef]
  7. Y. Sun, T. P. White, and A. A. Sukhorukov, “Slow-light enhanced optical forces between longitudinally shifted photonic-crystal nanowire waveguides,” Opt. Lett. 37, 785–787(2012). [CrossRef]
  8. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ‘zipper’ photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009). [CrossRef]
  9. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef]
  10. P. T. Rakich, M. A. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17, 18116–18135 (2009). [CrossRef]
  11. Z. Wang and P. Rakich, “Response theory of optical forces in two-port photonics systems: a simplified framework for examining conservative and non-conservative forces,” Opt. Express 19, 22322–22336 (2011). [CrossRef]
  12. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 1988).
  13. S. Ha and A. A. Sukhorukov, “Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers,” J. Opt. Soc. Am. B 25, C15–C22 (2008). [CrossRef]
  14. C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818(2008). [CrossRef]
  15. C. J. Benton and D. V. Skryabin, “Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires,” Opt. Express 17, 5879–5884 (2009). [CrossRef]
  16. A. A. Sukhorukov, A. V. Lavrinenko, D. N. Chigrin, D. E. Pelinovsky, and Y. S. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B 25, C65–C74 (2008). [CrossRef]
  17. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  18. J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (Taylor & Francis, 2009).
  19. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996). [CrossRef]
  20. S. Ha, A. A. Sukhorukov, and Yu. S. Kivshar, “Slow-light switching in nonlinear Bragg-grating couplers,” Opt. Lett. 32, 1429–1431 (2007). [CrossRef]
  21. Y. J. Tsofe and B. A. Malomed, “Quasisymmetric and asymmetric gap solitons in linearly coupled Bragg gratings with a phase shift,” Phys. Rev. E 75, 056603 (2007). [CrossRef]
  22. S. G. Johnson, and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited