OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 743–765

Metallic nanoparticles on waveguide structures: effects on waveguide mode properties and the promise of sensing applications

T. Cheng, C. Rangan, and J. E. Sipe  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 743-765 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000743


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a treatment of metallic nanoparticles on waveguide (WG) structures, treating the scenario where the spacing between the metallic nanoparticles is much less than the wavelength of light. We derive an effective medium treatment of the layer containing the nanoparticles, introducing transfer matrices for the layer. The coefficients of the transfer matrices take into account the interaction of the nanoparticles with each other, as well as local field corrections to the interaction of the nanoparticles with the material beneath them. Used with the WG mode pole expansions for the Fresnel coefficients of the WG structure, this allows for simple expressions for the shift and width of the WG mode resonance wave vector induced by the nanoparticles. As an example, we work out the simple case where the nanoparticles are treated as point dipoles, and use it to investigate the potential of this kind of structure for sensing applications.

© 2013 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

History
Original Manuscript: August 15, 2012
Manuscript Accepted: October 15, 2012
Published: February 28, 2013

Citation
T. Cheng, C. Rangan, and J. E. Sipe, "Metallic nanoparticles on waveguide structures: effects on waveguide mode properties and the promise of sensing applications," J. Opt. Soc. Am. B 30, 743-765 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by absorbtion-desorbtion processes,” in Proceedings of the Second European Conference of Integrated Optics, IEE Conference Publication No. 227 (IEE, 1983), pp. 152–155.
  2. H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Review: waveguide-based biosensors for pathogen detection,” Sensors 9, 5783–5809 (2009). [CrossRef]
  3. C. Yu and J. Irudayaraj, “A multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007). [CrossRef]
  4. A. Ulman, An Introduction to Ultrathin Films (Academic, 1991).
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  6. C. J. Kiely, J. Fink, M. Burst, D. Bethell, and D. J. Schiffrin, “Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters,” Nature 396, 444–446 (1998). [CrossRef]
  7. A. J. Haes, D. A. Stuart, S. Nie, and R. P. Van Duyne, “Using solution phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles as biological sensing platforms,” J. Flouresc. 14, 355–367 (2004). [CrossRef]
  8. S. Busse, J. Käshammer, S. Krämer, and S. Mittler, “Gold and thiol surface functionalized integrated optical Mach–Zehnder interferometer for sensing purposes,” Sens. Actuators B 60, 148–154 (1999).
  9. K. A. Willets and R. P. van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  10. Z. M. Qi, N. Matsuda, J. Santos, T. Yoshida, A. Takatsu, and K. Kato, “In situ monitoring of metal nanoparticle self-assembly on protein-functionalized glass by broadband optical waveguide spectroscopy,” J. Colloid. Interface Sci. 271, 249–253 (2004). [CrossRef]
  11. A. K. A. Aliganga, I. Lieberwirth, G. Glasser, A.-S. Duwez, Y. Sun, and S. Mittler, “Fabrication of equally oriented pancake shaped gold nanoparticles by SAM templated OMCVD and their optical response,” Org. Electron. 8, 161–174 (2007). [CrossRef]
  12. P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically-coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008). [CrossRef]
  13. S. M. Hashemi Rafsanjani, T. Cheng, C. Rangan, and S. Mittler, “A novel biosensing approach based on linear arrays of immobilized gold nanoparticles,” J. Appl. Phys. 107, 094303 (2010). [CrossRef]
  14. H. Jiang, T. Manifar, J. Sabarinathan, and S. Mittler, “3-D FDTD analysis of gold nanoparticle based photonic crystal on slab waveguide,” J. Lightwave Technol. 27, 2264–2270 (2009). [CrossRef]
  15. S. Mittler, “Gold nanoparticles on waveguides for and toward sensing application,” in Optical Guided-wave Chemical and Biosensors I, M. Zourob and A. Lakhtakia, eds., Springer Series on Chemical Sensors and Biosensors (Springer, 2010), Vol. 7, Part 2, pp. 209–229.
  16. J. E. Sipe and J. Becher, “Surface energy transfer enhanced by optical cavity excitation: a pole analysis,” J. Opt. Soc. Am. 72, 288–295 (1982). [CrossRef]
  17. J. E. Sipe, “Bulk-selvedge coupling theory for the optical properties of surfaces,” Phys. Rev. B 22, 1589–1599 (1980). [CrossRef]
  18. G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003). [CrossRef]
  19. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and widths,” J. Phys. Chem. B 107, 7343–7350 (2003). [CrossRef]
  20. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993). [CrossRef]
  21. T. D. Backes and D. S. Citrin, “Plasmon polaritons in 2-D nanoparticle arrays,” IEEE J. Sel. Top. Quantum Electron. 14, 1530–1535 (2008). [CrossRef]
  22. Y.-R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B 78, 035419 (2008). [CrossRef]
  23. S. M. R. Z. Bajestani, M. Shahabadi, and N. Talebi, “Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique,” J. Opt. Soc. Am. B 28, 937–943 (2011). [CrossRef]
  24. E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223–230 (2009). [CrossRef]
  25. A. Semichaevsky and A. Akyurtlu, “Homogenization of metamaterial-loaded substrates and superstrates for antennas,” Prog. Electromagn. Res. PIER 71, 129–147 (2007). [CrossRef]
  26. A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit homogenization for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002). [CrossRef]
  27. Y. Wu and Z.-Q. Zhang, “Dispersion relations and their symmetry properties of electromagnetic and elastic metamaterials in two dimensions,” Phys. Rev. B 79, 195111 (2009). [CrossRef]
  28. P. A. Belov and C. R. Simovski, “Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers,” Phys. Rev. E 72, 026615 (2005). [CrossRef]
  29. J. V. Kranendonk and J. E. Sipe, “Foundations of the macroscopic electromagnetic theory of dielectric solids,” in Progress in Optics XV, E. Wolf, ed. (North-Holland, 1977), pp. 247–350.
  30. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  31. J. E. Sipe, “New Green function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481–489 (1987). [CrossRef]
  32. A. Bagchi, R. G. Barrera, and R. Fuchs, “Local-field effect in optical reflectance from adsorbed overlayers,” Phys. Rev. B 25, 7086–7096 (1982). [CrossRef]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  34. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  35. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008). [CrossRef]
  36. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981). [CrossRef]
  37. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited