OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 1000–1007

Optically defined plasmonic waveguides in crystalline semiconductors at optical frequencies

Herman M. K. Wong and Amr S. Helmy  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 1000-1007 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High intensity optical excitation to transform a crystalline semiconductor into a plasmonic metal at near-infrared wavelengths is theoretically investigated. A calculated intensity of 51.46GW/cm2 is sufficient to transform GaAs into metal at 1.55 μm to support plasmonic modes. A practical nanoscale plasmonic gap waveguide is designed based on the GaAs/GaN materials system, demonstrating the capability of obtaining plasmonic waveguiding by high intensity optical excitation. The propagation characteristics of the plasmonic gap mode in the designed waveguide can be dynamically tuned over a broad range of values by varying the intensity of the pump excitation using modest average powers between 15 and 75 mW.

© 2013 Optical Society of America

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:

Original Manuscript: December 5, 2012
Revised Manuscript: February 11, 2013
Manuscript Accepted: February 18, 2013
Published: March 25, 2013

Herman M. K. Wong and Amr S. Helmy, "Optically defined plasmonic waveguides in crystalline semiconductors at optical frequencies," J. Opt. Soc. Am. B 30, 1000-1007 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maier, Plasmonics—Fundamentals and Applications (Springer, 2007).
  2. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, and H. A. Atwater, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008). [CrossRef]
  3. T. Sands, J. P. Harbison, N. Tabatabaie, W. K. Chan, H. L. Gilchrist, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, “Epitaxial metal(NiAl)-semiconductor(III-V) heterostructures by MBE,” Surf. Sci. 228, 1–8 (1990). [CrossRef]
  4. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22, 143201 (2010). [CrossRef]
  5. V. A. Fedotov, T. Uchino, and J. Y. Ou, “Low-loss plasmonic metal material based on epitaxial gold monocrystal film,” Opt. Express 20, 9545–9550 (2012). [CrossRef]
  6. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and J. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009). [CrossRef]
  7. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010). [CrossRef]
  8. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  9. D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, and K. C. Vernon, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  10. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115(2008). [CrossRef]
  11. J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004). [CrossRef]
  12. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008). [CrossRef]
  13. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstrations of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2011). [CrossRef]
  14. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012). [CrossRef]
  15. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4, 295–297 (2011). [CrossRef]
  16. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19, 14594–14603 (2011). [CrossRef]
  17. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett. 105, 086803 (2010). [CrossRef]
  18. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2012). [CrossRef]
  19. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2012). [CrossRef]
  20. D. M. Goodmanson, “A recursion relation for matrix elements of the quantum bouncer,” Am. J. Phys. 68, 866–868 (2000). [CrossRef]
  21. C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. A 137, 696–702 (1932). [CrossRef]
  22. A. N. Oraevsky, “Whether is it possible to produce high concentrations of carriers in a semiconductor for observing the Bose condensate at room temperature?” Quantum Electron. 33, 377–379 (2003). [CrossRef]
  23. M. Rasolt, “Plasmon-phonon-assisted electron-hole recombination in Si at very high carrier density,” Phys. Rev. B 33, 1166–1176 (1986). [CrossRef]
  24. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53 μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987). [CrossRef]
  25. M. Combescot and J. Bok, “Electron-hole plasma generation and evolution in semiconductors,” J. Lumin. 30, 1–17 (1985). [CrossRef]
  26. R. Schroeder and B. Ullrich, “Absorption and subsequent emission saturation of two-photon excited materials: theory and experiment,” Opt. Lett. 27, 1285–1287 (2002). [CrossRef]
  27. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transfer 48, 501–509 (2005). [CrossRef]
  28. P. Allenspacher, B. Hüttner, and W. Riede, “Ultrashort pulse damage of Si and Ge semiconductors,” Proc. SPIE 4932, 359–365 (2003). [CrossRef]
  29. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000). [CrossRef]
  30. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, “Ultrafast electronic disordering during femtosecond laser melting of GaAs,” Phys. Rev. Lett. 67, 1023–1026 (1991). [CrossRef]
  31. S. V. Novikov, N. M. Stanton, R. P. Campion, R. D. Morris, H. L. Geen, C. T. Foxon, and A. J. Kent, “Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates,” Semicond. Sci. Technol. 23, 015018 (2008). [CrossRef]
  32. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521(2007). [CrossRef]
  33. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008). [CrossRef]
  34. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17, 11045–11056 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited