OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 1022–1026

Interaction between localized-on-nanoparticles plasmon polaritons and surface plasmon polaritons

Irina Baryakhtar, Yuri Demidenko, and Valeri Lozovski  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 1022-1026 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach to describing of the excitation and propagation of the surface plasmon polaritons (SPPs) along the surface with the nanodisks that are located above them is proposed. In the framework of the proposed approach the dissipation function is calculated for the different geometry of the systems with the disks. The Fano-like antiresonance curves of absorption profiles have been obtained. The antiresonance absorption characteristics have been explained by the interaction between the SPP with the continuous spectrum and localized plasmon polaritons at the cylinders with the discrete spectrum. The obtained result is similar to the well-known Fano effect.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.5420) Optics at surfaces : Polaritons
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 4, 2013
Manuscript Accepted: February 6, 2013
Published: March 26, 2013

Irina Baryakhtar, Yuri Demidenko, and Valeri Lozovski, "Interaction between localized-on-nanoparticles plasmon polaritons and surface plasmon polaritons," J. Opt. Soc. Am. B 30, 1022-1026 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011). [CrossRef]
  2. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003). [CrossRef]
  3. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007). [CrossRef]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  5. A. Benahmed and C. M. Ho, “Using surface plasmon propagation through nanostructures for chemical and biological sensing,” in NSTI-Nanotech 2006 (NSTI, 2006), pp. 182–185.
  6. H.-E. Schaefer, Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, 2010).
  7. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005). [CrossRef]
  8. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998). [CrossRef]
  9. F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999). [CrossRef]
  10. C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,” Proc. SPIE 6642, 664205 (2007). [CrossRef]
  11. A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007). [CrossRef]
  12. L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009). [CrossRef]
  13. S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Direct imaging of localized surface plasmon polaritons,” Opt. Lett. 36, 3401–3403 (2011). [CrossRef]
  14. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008). [CrossRef]
  15. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  16. X. Xiao, J. Wu, M. Jinbo, F. Miyamaru, M. Zhang, S. Li, M. W. Takeda, W. Wen, and P. Sheng, “Fano effect of metamaterial resonance in terahertz extraordinary transmission,” Appl. Phys. Lett. 98, 011911 (2011). [CrossRef]
  17. I. S. Maksymov and A. E. Miroshnichenko, “Fano resonance tunable plasmonic-photonic nanoantennas,” in Progress Electromagnetic Research Symposium Abstracts, KL, Malaysia, 27–30 March2012, p. 769.
  18. V. Lozovski, “The effective susceptibility concept in the electrodynamics of nano-systems,” J. Comput. Theor. Nanosci. 7, 2077–2093 (2010). [CrossRef]
  19. Yu. Demidenko, D. Makarov, and V. Lozovski, “Local-field effects in magneto-plasmonic nanocomposites,” J. Opt. Soc. Am. B 27, 2700–2706 (2010). [CrossRef]
  20. M. L. Bah, A. Akjoulj, and L. Dobrzynski, “Response functions in layered dielectric media,” Surf. Sci. Rep. 16, 97–131 (1992). [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  22. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983). [CrossRef]
  23. B. I. Khudik, V. Z. Lozovski, and I. V. Nazarenko-Baryakhtar, “Macroscopic electrodynamics of ultra-thin films,” Phys. Stat. Sol. B 153, 167–177 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited