OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 1027–1035

Accurate transition frequency list of the ν3 band of methane from sub-Doppler resolution comb-referenced spectroscopy

Masashi Abe, Kana Iwakuni, Sho Okubo, and Hiroyuki Sasada  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 1027-1035 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have carried out sub-Doppler resolution spectroscopy of the ν3 band of CH412 using a difference-frequency-generation source, an enhanced cavity absorption cell, and an optical frequency comb, and we have added 150 lines to the transition frequency list published earlier [Opt. Express 19, 23878 (2011)]. It now covers 204 lines from the P(12) to R(8) transitions, involving 21 weak forbidden transitions, with a typical uncertainty of 3 kHz for allowed transitions and 12 kHz for forbidden transitions. The combination differences between the allowed and forbidden transitions enable us to determine a scalar rotational constant and three scalar distortion constants of the ground vibrational state with greatly reduced uncertainties.

© 2013 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: December 10, 2012
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 25, 2013
Published: March 26, 2013

Masashi Abe, Kana Iwakuni, Sho Okubo, and Hiroyuki Sasada, "Accurate transition frequency list of the ν3 band of methane from sub-Doppler resolution comb-referenced spectroscopy," J. Opt. Soc. Am. B 30, 1027-1035 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Shimoda, “Absolute frequency stabilization of the 3.39 μm laser on a CH4 line,” IEEE Trans. Instrum. Meas. IM-17, 343–346(1968).
  2. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969). [CrossRef]
  3. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003). [CrossRef]
  4. Resolution 1 of the 17th meeting of the Conférence Générale des Poids et Mesures (1983).
  5. K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day, R. L. Barger, and J. L. Hall, “Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser,” Phys. Rev. Lett. 29, 1346–1349 (1972). [CrossRef]
  6. J. L. Hall, C. J. Bordé, and K. Uehara, “Direct optical resolution of the recoil effect using saturated absorption spectroscopy,” Phys. Rev. Lett. 37, 1339–1342 (1976). [CrossRef]
  7. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. -P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  8. S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J.-P. Champion, M. Loëte, A. Nikitin, and M. Quack, “Global analysis of the high resolution infrared spectrum of methane CH412 in the region from 0 to 4800  cm−1,” Chem. Phys. 356, 131–146 (2009). [CrossRef]
  9. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011). [CrossRef]
  10. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, “Accurate absolute frequencies of the ν1+ν3 band of C2H213 determined using an infrared mode-locked Cr:YAG laser frequency comb,” J. Opt. Soc. Am. B 23, 741–749 (2006). [CrossRef]
  11. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of C2H212 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23, 2200–2208 (2006). [CrossRef]
  12. P. Maddaloni, G. Gagliardi, P. Malara, and P. de Natale, “A 3.5 mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005). [CrossRef]
  13. K. Anzai, X. M. Gao, H. Sasada, and N. Yoshida, “Narrow Lamb dip of 3.4 μm band transition of methane with difference frequency generation and enhancement cavity,” Jpn. J. Appl. Phys. 45, 2771–2775 (2006). [CrossRef]
  14. M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4 μm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett. 34, 1744–1746 (2009). [CrossRef]
  15. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3 μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006). [CrossRef]
  16. D. Richter, P. Weibring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564–571 (2007). [CrossRef]
  17. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4 μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80, 032518 (2009). [CrossRef]
  18. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba, and H. Sasada, “Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10−11,” Opt. Express 19, 23878–23888 (2011). [CrossRef]
  19. T. Oka, “‘Forbidden’ Rotational Transitions,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, 1976), Vol. 2, pp. 229–253.
  20. M. Takami, K. Uehara, and K. Shimoda, “Rotational transitions of CH4 in the v3=1 excited state observed by an infrared-microwave double resonance method,” Jpn. J. Appl. Phys. 12, 924–925 (1973). [CrossRef]
  21. R. F. Curl, “Infrared-radio frequency double resonance observations of pure rotational Q-branch transitions of methane,” J. Mol. Spectrosc. 48, 165–173 (1973). [CrossRef]
  22. R. F. Curl, T. Oka, and D. S. Smith, “The observation of a pure rotational Q-branch transition of methane by infrared-radio frequency double resonance,” J. Mol. Spectrosc. 46, 518–520 (1973). [CrossRef]
  23. M. Oldani, M. Andrist, A. Bauder, and A. G. Robiette, “Pure rotational spectra of methane and methane-d4 in the vibrational ground state observed by microwave Fourier transform spectroscopy,” J. Mol. Spectrosc. 110, 93–105 (1985). [CrossRef]
  24. C. J. Pursell and D. P. Weliky, “Pure rotational transitions in the ν3 state of methane,” J. Mol. Spectrosc. 153, 303–306(1992). [CrossRef]
  25. I. Ozier, “The tensor J8 contribution to the rotational energy of a tetrahedral molecule,” J. Mol. Spectrosc. 53, 336–345 (1974). [CrossRef]
  26. P. S. Ering, D. A. Tyurikov, G. Kramer, and B. Lipphardt, “Measurement of the absolute frequency of the methane E-line at 88 THz,” Opt. Commun. 151, 229–234 (1998). [CrossRef]
  27. L. Féjard, J. Champion, J. Jouvard, L. R. Brown, and A. S. Pine, “The intensities of methane in the 3–5 μm region revisited,” J. Mol. Spectrosc. 201, 83–94 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited