OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 1036–1040

Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity

Tai-Chia Lin, Milivoj R. Belić, Milan S. Petrović, Najdan B. Aleksić, and Goong Chen  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 1036-1040 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the existence and form of (2+1)-dimensional ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. General conditions for the existence of fundamental solitons in a local isotropic model that includes an intensity-dependent saturable nonlinearity are identified. We confirm our theoretical findings numerically and determine the ground-state profiles. We check their stability in propagation and identify the coupling constant threshold for their existence. Critical exponents of the power and beam width are determined as functions of the propagation constant at the threshold. We finally formulate a variational approach to the same problem, introduce an approximate fundamental Gaussian solution, and verify that this method leads to the same threshold and similar critical exponents as the theoretical and numerical methods.

© 2013 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: November 27, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: February 27, 2013
Published: March 27, 2013

Tai-Chia Lin, Milivoj R. Belić, Milan S. Petrović, Najdan B. Aleksić, and Goong Chen, "Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity," J. Opt. Soc. Am. B 30, 1036-1040 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. L. Lamb, Elements of Soliton Theory (Wiley, 1980).
  2. N. N. Akhmediev and A. A. Ankiewicz, Solitons (Chapman & Hall, 1997).
  3. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  4. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Plenum, 1984).
  5. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (Cambridge University, 1991).
  6. C. Sulem and P. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse (Springer-Verlag, 1999).
  7. E. DelRe, A. Ciattoni, B. Crosignani, and P. Di Porto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999). [CrossRef]
  8. D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 274, 135–142 (2002).
  9. O. Cohen, S. Lan, T. Carmon, J. A. Giordmaine, and M. Segev, “Spatial vector solitons consisting of counterpropagating fields,” Opt. Lett. 27, 2013–2015 (2002). [CrossRef]
  10. C. Rotschild, O. Cohen, O. Manela, T. Carmon, and M. Segev, “Interactions between spatial screening solitons propagating in opposite directions,” J. Opt. Soc. Am. B 21, 1354–1357(2004). [CrossRef]
  11. E. DelRe, A. D’Ercole, and E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E 71, 036610 (2005). [CrossRef]
  12. A. Ciattoni, A. Marini, C. Rizza, and E. DelRe, “Collision and fusion of counterpropagating micrometer-sized optical beams in periodically biased photorefractive crystals,” Opt. Lett. 34, 911–913 (2009). [CrossRef]
  13. M. S. Petrović, M. R. Belić, C. Denz, and Y. S. Kivshar, “Counterpropagating optical beams and solitons,” Laser Photon. Rev. 5, 214–233 (2011). [CrossRef]
  14. M. Belić, P. Jander, K. Motzek, A. Desyatnikov, D. Jović, A. Strinić, M. Petrović, C. Denz, and F. Kaiser, “Counterpropagating self-trapped beams in photorefractive crystals,” J. Opt. B Quantum. Semiclass. Opt. 6, S190–S196 (2004). [CrossRef]
  15. M. Belić, D. Jović, S. Prvanović, D. Arsenović, and M. Petrović, “Counterpropagating self-trapped beams in optical photonic lattices,” Opt. Express 14, 794–799 (2006). [CrossRef]
  16. M. V. Tratnik and J. E. Sipe, “Bound solitary waves in a birefringent optical fibre,” Phys. Rev. A 38, 2011–2017 (1988). [CrossRef]
  17. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  18. M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agullo-Lopez, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E 65, 066610 (2002). [CrossRef]
  19. E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26, 908–910 (2001). [CrossRef]
  20. E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004). [CrossRef]
  21. K. Motzek, M. Belić, T. Richter, C. Denz, A. Desyatnikov, P. Jander, and F. Kaiser, “Counterpropagating beams in biased photorefractive crystals: anisotropic theory,” Phys. Rev. E 71, 016610 (2005). [CrossRef]
  22. D. Jović, R. Jovanović, S. Prvanović, M. Petrović, and M. Belić, “Counterpropagating beams in rotationally symmetric photonic lattices,” Opt. Mater. 30, 1173–1176 (2008). [CrossRef]
  23. E. H. Lieb and M. Loss, Analysis, 2nd ed. (American Mathematical Society, 2001).
  24. T. C. Lin, M. R. Belić, M. S. Petrović, and G. Chen, “Ground state of nonlinear Schrödinger systems with saturable nonlinearity,” arXiv:1208.6259v1 [math-ph] (2012).
  25. S. Gatz and J. Herrmann, “Propagation of optical beams and the properties of two-dimensional spatial solitons in media with a local saturable nonlinear refractive index,” J. Opt. Soc. Am. B 14, 1795–1806 (1997). [CrossRef]
  26. V. I. Petviashvili, “Equation of an extraordinary soliton,” Fiz. Plazmy 2, 469–471 (1976).
  27. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, “Dipole and quadrupole solitons in optically induced two-dimensional photonic lattices: theory and experiment,” Stud. Appl. Math. 113, 389–412 (2004). [CrossRef]
  28. M. S. Petrović, A. I. Strinić, N. B. Aleksić, and M. R. Belić, “Do shape invariant solitons in highly nonlocal nematic liquid crystals really exist?,” arXiv:1110.5053v1 [physics.optics] (2011).
  29. N. Aleksić, M. Petrović, A. Strinić, and M. Belić, “Solitons in highly nonlocal nematic liquid crystals: variational approach,” Phys. Rev. A 85, 033826 (2012). [CrossRef]
  30. K. Motzek, P. Jander, A. Desyatnikov, M. Belić, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 066611(2003). [CrossRef]
  31. D. Anderson, “Variational approach to nonlinear pulse propagation in optical fibers,” Phys. Rev. A 27, 3135–3145 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited