OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 1058–1068

Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials

Ugur Cem Hasar, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 1058-1068 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001058


View Full Text Article

Enhanced HTML    Acrobat PDF (2243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterials (MMs) are artificial materials that have received attention recently because their built-in features create collective electromagnetic effects that are otherwise impossible, such as negative refraction, and because of their exotic electromagnetic applications, namely, perfect lens and invisibility cloaks. Depending on wave propagation characteristics, MMs possessing normally weak magneto-electric coupling coefficients start to exhibit stronger bianisotropic effects. Therefore, accurate electromagnetic characterization of these MMs is important. In this study, we adapt a stepwise method based on the Nicolson–Ross–Weir technique for accurate and unique retrieval of electromagnetic properties of bianisotropic MM slabs. For this goal, we have derived explicit expressions for unique retrieval of electromagnetic properties of these slabs and compared these expressions with those in the literature in the retrieval process. From the comparison, we note that derived expressions are appropriate for unique determination of electromagnetic properties of bianisotropic MM slabs. In the performance analysis of the stepwise method for different measurement scenarios, we considered different bianisotropic MM cell configurations (split-ring and Omega-shaped resonators as well as the same resonators with wire strips) and extracted their electromagnetic properties when measured/simulated scattering parameters have some thermal noise. We note that for most of the frequencies, the stepwise method retrieves correct electromagnetic properties even when a relatively higher normally distributed noise with zero mean value and with standard deviations of 0.015 is present. In addition to the influence of thermal noise on performance of the stepwise method, we also analyzed the effect of both increasing length slab and the frequency band on retrieved electromagnetic properties of the analyzed various bianisotropic MM slabs.

© 2013 Optical Society of America

OCIS Codes
(290.3030) Scattering : Index measurements
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: November 27, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: February 22, 2013
Published: March 29, 2013

Citation
Ugur Cem Hasar, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul, "Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials," J. Opt. Soc. Am. B 30, 1058-1068 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-1058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Shultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  4. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K-.Y. Kang, Y-.H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). [CrossRef]
  5. J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic waves,” Science 312, 1780–1782 (2006). [CrossRef]
  6. R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE, 1990).
  7. K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007). [CrossRef]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low-frequency plasmons in thin-wire structures,” J. Phys. 10, 4785–4809 (1998). [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  10. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004). [CrossRef]
  11. Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F.-M. Wang, and S.-N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007). [CrossRef]
  12. C. Sabah, “Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators,” J. Electromagn. Waves Appl. 26, 1105–1115 (2012). [CrossRef]
  13. C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. 311, 254–263 (2003). [CrossRef]
  14. J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84, 1537–1539 (2004). [CrossRef]
  15. L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, “Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss,” Phys. Rev. B 70, 073102 (2004). [CrossRef]
  16. V. V. Varadan, R. Ro, and S. Penumarthy, “Switching of electrical and magnetic resonances in omega structures by a reflection operation–experimental studies,” Microw. Opt. Technol. Lett. 48, 2624–2629 (2006). [CrossRef]
  17. E. Lheurette, O. Vanbeisen, and D. Lippens, “Double negative media using interconnected Ω-type metallic particles,” Microw. Opt. Technol. Lett. 49, 84–90 (2007). [CrossRef]
  18. K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostr. 6, 116–121 (2008). [CrossRef]
  19. Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostr. 10, 329–336 (2012). [CrossRef]
  20. C. Sabah, ““Multiband planar metamaterials,” Microw. Opt. Technol. Lett. 53, 2255–2258 (2011). [CrossRef]
  21. C. Sabah, “Multiband metamaterials based on multiple concentric open ring resonators topology,” IEEE J. Sel. Top. Quantum Electron. 19, 8500808 (2012). [CrossRef]
  22. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009). [CrossRef]
  23. J. B. Pendry, “Metamaterials in the sunshine,” Nat. Mater. 5, 599–600 (2006). [CrossRef]
  24. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  25. H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009). [CrossRef]
  26. D. R. Smith, D. C. Vier, T. Koschhy, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  27. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009). [CrossRef]
  28. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88, 163108 (2006). [CrossRef]
  29. T. L. Kelly, A. G. Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11, 3169–3173 (2011). [CrossRef]
  30. U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry–Perot cavities in sensing applications,” Opt. Express 20, 22208–22223 (2012). [CrossRef]
  31. R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002). [CrossRef]
  32. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004). [CrossRef]
  33. A. Alu, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84, 075153 (2011). [CrossRef]
  34. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  35. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005). [CrossRef]
  36. A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970). [CrossRef]
  37. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33–36 (1974). [CrossRef]
  38. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]
  39. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005). [CrossRef]
  40. U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).
  41. C. Fietz and C. M. Soukoulis, “Scattering matrix of the boundary of a nonlocal metamaterial,” Phys. Rev. B 86, 085146 (2012). [CrossRef]
  42. F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012). [CrossRef]
  43. O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011). [CrossRef]
  44. V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech. 55, 2224–2230 (2007). [CrossRef]
  45. J. J. Barroso and U. C. Hasar, “Constitutive parameters of a metamaterial slab retrieved by the phase unwrapping method,” J. Infrared Millim. Terahertz Waves 33, 237–244 (2012). [CrossRef]
  46. U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res. 129, 405–420 (2012).
  47. T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments,” J. Appl. Phys. 90, 5419–5424 (2001). [CrossRef]
  48. G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech. 57, 1136–1146 (2009). [CrossRef]
  49. S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75, 153104 (2007). [CrossRef]
  50. S. Zu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).
  51. U. C. Hasar, J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, “Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties of retrieval methods of bianisotropic metamaterials,” Prog. Electromagn. Res. 128, 365–380 (2012).
  52. U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs,” Opt. Express 20, 29002–29022 (2012). [CrossRef]
  53. I. Suarez, V. Chirvony, D. Hill, and J. Matrinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostr. 10, 304–311 (2012). [CrossRef]
  54. F. Bilotti and L. Sevgi, “Metamaterials: definitions, properties, applications, and FDTD-based modeling and simulation (invited paper),” Int. J. RF Microw. CAE 22, 422–438 (2012). [CrossRef]
  55. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited