OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 1069–1076

Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics

Tie-Jun Wang and Gui Lu Long  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 1069-1076 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001069


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two three-photon entanglement concentration protocols (ECPs) for an arbitrary unknown less-entangled W -class state, resorting to linear optical elements. In our normal ECP, the three parties can obtain a three-photon system in a standard W state probabilistically, similar to the Schmidt projection method. In our improved ECP, the parties obtain not only some higher-fidelity partially entangled three-photon systems but also some entangled two-photon systems in each round of concentration with two copies of three-photon systems. It is interesting to show that the three-photon and two-photon systems kept after a round of concentration have the same parameters. The parties can obtain some three-photon systems in a standard W state with a far higher success probability than the normal ECP, by exploiting the three-photon and two-photon systems with the same parameters as the resource for the next round of concentration. Both of these ECPs may have good applications in quantum communication in the future.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: January 8, 2013
Revised Manuscript: February 5, 2013
Manuscript Accepted: February 13, 2013
Published: March 29, 2013

Citation
Tie-Jun Wang and Gui Lu Long, "Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics," J. Opt. Soc. Am. B 30, 1069-1076 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-1069


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  4. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  5. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  6. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  7. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  8. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  9. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  10. F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005). [CrossRef]
  11. Z. J. Zhang, Y. Li, and Z. X. Man, “Multiparty quantum secret sharing,” Phys. Rev. A 71, 044301 (2005). [CrossRef]
  12. F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005). [CrossRef]
  13. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
  14. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  15. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
  16. X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
  17. Z. X. Man, Y. J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states,” Eur. Phys. J. D 42, 333–340 (2007). [CrossRef]
  18. Z. Y. Wang, H. Yuan, S. H. Shi, and Z. J. Zhang, “Three-party qutrit-state sharing,” Eur. Phys. J. D 41, 371–375 (2007). [CrossRef]
  19. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
  20. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  21. Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,” Phys. Rev. Lett. 91, 087901 (2003). [CrossRef]
  22. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004). [CrossRef]
  23. J. C. Boileau, R. Laflamme, M. Laforest, and C. R. Myers, “Robust quantum communication using a polarization-entangled photon pair,” Phys. Rev. Lett. 93, 220501 (2004). [CrossRef]
  24. T. Yamamoto, J. Shimamura, S. K. Özdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005). [CrossRef]
  25. X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
  26. F. G. Deng, X. H. Li, and H. Y. Zhou, “Passively self-errorrejecting qubit transmission over a collective-noise channel,” Quantum Inf. Comput. 11, 0913–0924 (2011).
  27. Y. B. Sheng and F. G. Deng, “Efficient quantum entanglement distribution over an arbitrary collective-noise channel,” Phys. Rev. A 81, 042332 (2010). [CrossRef]
  28. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
  29. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
  30. J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
  31. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef]
  32. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement purification based on parametric downconversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  33. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  34. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  35. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685 (2011). [CrossRef]
  36. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  37. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
  38. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  39. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  40. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  41. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  42. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single- photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  43. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  44. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
  45. Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
  46. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
  47. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
  48. W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
  49. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  50. F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012). [CrossRef]
  51. L.-L. Sun, H.-F. Wang, S. Zhang, and K.-H. Yeon, “Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 630–634 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited