Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics |
JOSA B, Vol. 30, Issue 4, pp. 1069-1076 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001069
Enhanced HTML Acrobat PDF (328 KB)
Abstract
We present two three-photon entanglement concentration protocols (ECPs) for an
arbitrary unknown less-entangled
© 2013 Optical Society of America
OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing
ToC Category:
Quantum Optics
History
Original Manuscript: January 8, 2013
Revised Manuscript: February 5, 2013
Manuscript Accepted: February 13, 2013
Published: March 29, 2013
Citation
Tie-Jun Wang and Gui Lu Long, "Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics," J. Opt. Soc. Am. B 30, 1069-1076 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-1069
Sort: Year | Journal | Reset
References
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
- C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
- G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
- X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
- M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
- L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
- F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005). [CrossRef]
- Z. J. Zhang, Y. Li, and Z. X. Man, “Multiparty quantum secret sharing,” Phys. Rev. A 71, 044301 (2005). [CrossRef]
- F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005). [CrossRef]
- A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
- F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
- F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
- X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
- Z. X. Man, Y. J. Xia, and N. B. An, “Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states,” Eur. Phys. J. D 42, 333–340 (2007). [CrossRef]
- Z. Y. Wang, H. Yuan, S. H. Shi, and Z. J. Zhang, “Three-party qutrit-state sharing,” Eur. Phys. J. D 41, 371–375 (2007). [CrossRef]
- A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
- F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
- Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,” Phys. Rev. Lett. 91, 087901 (2003). [CrossRef]
- J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004). [CrossRef]
- J. C. Boileau, R. Laflamme, M. Laforest, and C. R. Myers, “Robust quantum communication using a polarization-entangled photon pair,” Phys. Rev. Lett. 93, 220501 (2004). [CrossRef]
- T. Yamamoto, J. Shimamura, S. K. Özdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
- F. G. Deng, X. H. Li, and H. Y. Zhou, “Passively self-errorrejecting qubit transmission over a collective-noise channel,” Quantum Inf. Comput. 11, 0913–0924 (2011).
- Y. B. Sheng and F. G. Deng, “Efficient quantum entanglement distribution over an arbitrary collective-noise channel,” Phys. Rev. A 81, 042332 (2010). [CrossRef]
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
- D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
- J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
- C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement purification based on parametric downconversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
- X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
- F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
- C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19, 25685 (2011). [CrossRef]
- C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
- S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
- B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
- T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
- Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
- Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single- photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
- F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
- M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
- Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
- H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
- H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
- W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
- Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
- F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012). [CrossRef]
- L.-L. Sun, H.-F. Wang, S. Zhang, and K.-H. Yeon, “Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 630–634 (2012). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.