OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 795–805

Switchable hyperentangled photon pairs from an integrated optic waveguide device

Jasleen Lugani, Sankalpa Ghosh, and Krishna Thyagarajan  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 795-805 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (961 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose an integrated optic waveguide device employing a modified Mach–Zehnder interferometer, capable of generating nondegenerate, hyperentangled photon pairs. The geometry enables multiple (eight) type-II phase-matched spontaneous parametric downconversion processes simultaneously, resulting in a biphoton state, which is simultaneously entangled in polarization and spatial modes. Using an electro-optic phase modulator, we show the possibility of altering modal entanglement without affecting polarization entanglement. Such switchable, maximally entangled photon pairs, entangled in multiple degrees of freedom, should be very useful in various on-chip quantum optics experiments and in the implementation of quantum information protocols employing higher dimensional entanglement.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: October 31, 2012
Manuscript Accepted: January 8, 2013
Published: March 6, 2013

Jasleen Lugani, Sankalpa Ghosh, and Krishna Thyagarajan, "Switchable hyperentangled photon pairs from an integrated optic waveguide device," J. Opt. Soc. Am. B 30, 795-805 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999). [CrossRef]
  3. K. Banaszek, A. B. URen, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001). [CrossRef]
  4. A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett. 33, 1825–1827 (2008). [CrossRef]
  5. S. Tanzilli, W. Tittel, H. de Riedmatten, H. Zbinden, P. Baldi, M. P. de Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160(2002). [CrossRef]
  6. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002). [CrossRef]
  7. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2178 (1997). [CrossRef]
  8. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  9. J. Chen, J. Fan, M. D. Eisaman, and A. Migdall, “Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer,” Phys. Rev. A 77, 053812 (2008). [CrossRef]
  10. G. Vallone, R. Ceccarelli, F. De. Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009). [CrossRef]
  11. H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106, 033601 (2011). [CrossRef]
  12. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998). [CrossRef]
  13. R. Ceccarelli, G. Vallone, F. De. Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009). [CrossRef]
  14. K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007). [CrossRef]
  15. W. B. Gao, P. Xu, X. C. Yao, O. Guhne, A. Cabello, C. Y. Lu, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states,” Phys. Rev. Lett 104, 020501 (2010). [CrossRef]
  16. G. Vallone, G. Donati, R. Ceccarilli, and P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010). [CrossRef]
  17. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  18. D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002). [CrossRef]
  19. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef]
  20. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2011). [CrossRef]
  21. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009). [CrossRef]
  22. S. Tanzilli, A. Martin, F. Kaiser, M. P. De. Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev. 6, 115–143(2012). [CrossRef]
  23. M. F. Saleh, G. Di Giuseppe, B. E. A. Saleh, and M. C. Teich, “Photonic circuits for generating modal, spectral, and polarization entanglement,” IEEE Photonics J. 2, 736–752 (2010). [CrossRef]
  24. K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A 80, 052321 (2009). [CrossRef]
  25. J. Lugani, S. Ghosh, and K. Thyagarajan, “Electro-optically switchable spatial-mode entangled photon pairs using a modified Mach–Zehnder interferometer,” Opt. Lett. 37, 3729–3731 (2012). [CrossRef]
  26. A. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge University, 1989).
  27. A. Yariv, Quantum Electronics (Wiley, 1989).
  28. J. Lugani, S. Ghosh, and K. Thyagarajan, “Generation of modal- and path-entangled photons using a domain-engineered integrated optical waveguide device,” Phys. Rev. A 83, 062333 (2011). [CrossRef]
  29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  30. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2006).
  31. A. Sharma and P. Bindal, “Analysis of diffused planar and channel waveguides,” IEEE J. Quantum Electron. 29, 150–153 (1993). [CrossRef]
  32. Crystal Technology Inc. (2006), http://www.crystaltechnology.com/docs/LNopt.pdf .
  33. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987). [CrossRef]
  34. Z. Weissman, E. Marom, and A. Hardy, “Very low loss Y junction power divider,” Opt. Lett. 14, 293–295 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited