OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 868–873

Fano correlation effect of optical response due to plasmon–exciton–plasmon interaction in an artificial hybrid molecule system

Yong He and Ka-Di Zhu  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 868-873 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically study the coupling of a semiconductor quantum dot (QD) to two metal nanoparticles (MNPs) based on cavity quantum electrodynamics and canonical transformation. It is shown that a Fano correlation effect shown in the energy absorption spectrum of this hybrid molecule appears, which stems from two correlated Fano interference processes because the two MNPs share a common segment of optical pathway involving QD as a result of the plasmon–exciton–plasmon interaction. The results also demonstrate that it is feasible to change the energy absorption of one MNP by adjusting the position of the other MNP, which may be potentially applied in plasmonic light trapping of MNPs in photovoltaic devices. Our work will open an avenue to deal with the coupling of QDs to a few MNPs in the quantum regime.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: November 6, 2012
Revised Manuscript: January 9, 2013
Manuscript Accepted: January 19, 2013
Published: March 12, 2013

Yong He and Ka-Di Zhu, "Fano correlation effect of optical response due to plasmon–exciton–plasmon interaction in an artificial hybrid molecule system," J. Opt. Soc. Am. B 30, 868-873 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4, 366–377 (2005). [CrossRef]
  2. J. M. Slocik, A. O. Govorov, and R. R. Naik, “Optical characterization of bio-assembled hybrid nanostructures,” Supramolecular Chem. 18, 415–421 (2006). [CrossRef]
  3. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11, 4029–4036 (2011). [CrossRef]
  4. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010). [CrossRef]
  5. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009). [CrossRef]
  6. M. Kawai, A. Yamamoto, N. Matsuura, and Y. Kanemitsu, “Energy transfer in mixed CdSe and Au nanoparticle monolayers studied by simultaneous photoluminescence and Raman spectral measurements,” Phys. Rev. B 78, 153308 (2008). [CrossRef]
  7. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8, 4128–4133 (2008).
  8. U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008). [CrossRef]
  9. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008). [CrossRef]
  10. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011). [CrossRef]
  11. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  12. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011). [CrossRef]
  13. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011). [CrossRef]
  14. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006). [CrossRef]
  15. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010). [CrossRef]
  16. A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011). [CrossRef]
  17. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451, 311–314 (2008). [CrossRef]
  18. Y. He, J. Li, and K. Zhu, “A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle complex in the presence of optical excitations,” J. Opt. Soc. Am. B 29, 997–1002 (2012). [CrossRef]
  19. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003). [CrossRef]
  20. F. J. G. De Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008). [CrossRef]
  21. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005). [CrossRef]
  22. T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73, 245302 (2006). [CrossRef]
  23. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  24. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. F. J. G. De Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010). [CrossRef]
  26. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]
  27. W. Ni, T. Ambjörnsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2009). [CrossRef]
  28. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76, 125308 (2007). [CrossRef]
  29. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]
  30. L. C. Davis, and L. A. Feldkamp, “Interaction of many discrete states with many continua,” Phys. Rev. B 15, 2961–2969 (1977). [CrossRef]
  31. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011). [CrossRef]
  32. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited