OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 874–883

Induced resonant electromagnetic transmission in almost-shorted dual screens

Harry F. Contopanagos  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 874-883 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000874


View Full Text Article

Enhanced HTML    Acrobat PDF (1376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A metallic screen is completely opaque to electromagnetic waves at all frequencies below the corresponding metal’s plasma frequency. We present, to the best of our knowledge, a type of composite material screen, exhibiting resonant transmission properties constituting what we believe is a kind of extraordinary transmission. The screens are composed of ultrathin metallic planar arrays of scatterers having dual electromagnetic properties, in the sense of Babinet’s principle, arbitrarily close to each other, including the limit of being coplanar. Such transmission is extraordinary because the corresponding composite screen geometrically approximates a continuous (“shorted”) metal plate, expected to be opaque to electromagnetic waves. Instead, because of a resonant scattering cancellation between the dual metallic arrays, the screens are completely transparent at the corresponding frequency. We validate the theory with waveguide measurements of a fabricated dual screen exhibiting resonant transmission at millimeter-wave frequencies. We further present fully transmitting arbitrarily thin designs, with unit cells even smaller than one-tenth of the wavelength, opening up technological possibilities for integration of these screens on devices necessitating negligible thickness and minimal layout area.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals
(290.5825) Scattering : Scattering theory
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Materials

History
Original Manuscript: December 20, 2012
Revised Manuscript: February 6, 2013
Manuscript Accepted: February 8, 2013
Published: March 12, 2013

Citation
Harry F. Contopanagos, "Induced resonant electromagnetic transmission in almost-shorted dual screens," J. Opt. Soc. Am. B 30, 874-883 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  2. J. Meixner and W. Andrejewski, “Strenge theorie der beugung ebener elektromagnetischer wellen an der volkommen leitenden kreisscheibe und an der kreisformigen offnung in volkommen leitenden ebenen schirm,” Ann. Phys. 442, 157–168 (1950). [CrossRef]
  3. H. Levine and J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pure Appl. Math. 3, 355–391 (1950). [CrossRef]
  4. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  7. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000). [CrossRef]
  8. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1903 (2005). [CrossRef]
  9. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  10. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002). [CrossRef]
  11. D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect,” Radio Sci. 40, 1–7 (2005). [CrossRef]
  12. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004). [CrossRef]
  13. F. J. Garcia de Abajo and R. Gomez-Medina, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005). [CrossRef]
  14. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef]
  15. F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  16. H. F. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, “Effective response functions for photonic bandgap materials,” J. Opt. Soc. Am. A 16, 1682–1699(1999). [CrossRef]
  17. D. R. Smith, S. Schultz, P. Marcos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  18. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” Pure Appl. Opt. 7, S97–S101 (2005). [CrossRef]
  19. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous materials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  20. N. G. Alexopoulos, C. A. Kyriazidou, and H. F. Contopanagos, “Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach,” IEEE Trans. Microwave Theor. Tech. 55, 254–267 (2007). [CrossRef]
  21. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55(1967). [CrossRef]
  22. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  23. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002). [CrossRef]
  24. A. Moreau, G. Granet, F. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11, 1131–1136 (2003). [CrossRef]
  25. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  27. H. G. Booker, “Slot aerials and their relation to complementary wire antennas,” J. IEE 93, 620–626 (1946).
  28. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE and Oxford University, 1991).
  29. R. E. Collin and W. H. Eggimann, “Dynamic interaction fields in a two-dimensional lattice,” IRE Trans. Microwave Theor. Tech. 9, 110–115 (1961). [CrossRef]
  30. W. H. Eggimann, “Higher order evaluation of dipole moments of a small circular disk,” IRE Trans. Microwave Theor. Tech. 8, 573 (1960). [CrossRef]
  31. C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theor. Tech. 49, 297–307 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited