OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 889–893

Generation of multilevel maximally entangled states under large atom-cavity detuning

Peng Shi, Li-Bo Chen, Yong-Jian Gu, and Wen-Dong Li  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 889-893 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose theoretical schemes to deterministically generate both qubit and qutrit maximally entangled states of atoms by passing two Rb87 atoms through a high-Q bimode cavity successively. The atomic spontaneous decay is efficiently suppressed because of large atom-cavity detuning in our schemes. Strict numerical simulation shows that, although the cavity decay exists unavoidably, our proposal is good enough to generate atomic maximal entanglements with high fidelity and within the current experimental technologies.

© 2013 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Atomic and Molecular Physics

Original Manuscript: December 14, 2012
Manuscript Accepted: January 30, 2013
Published: March 12, 2013

Peng Shi, Li-Bo Chen, Yong-Jian Gu, and Wen-Dong Li, "Generation of multilevel maximally entangled states under large atom-cavity detuning," J. Opt. Soc. Am. B 30, 889-893 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one-particle and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  3. A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  4. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997). [CrossRef]
  5. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  6. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000). [CrossRef]
  7. M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003). [CrossRef]
  8. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase-shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [CrossRef]
  9. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  10. C. C. Gerry, “Generation of four-photon coherent states in dispersive cavity QED,” Phys. Rev. A 53, 3818–3821 (1996). [CrossRef]
  11. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing—a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995). [CrossRef]
  12. S. Hughes, “Coupled-cavity QED using planar photonic crystals,” Phys. Rev. Lett. 98, 083603 (2007). [CrossRef]
  13. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  14. W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum correlations over more than 10 km,” Phys. Rev. A 57, 3229–3232 (1998). [CrossRef]
  15. F. Francica, S. Maniscalco, J. Piilo, F. Plastina, and K.-A. Suominen, “Off-resonant entanglement generation in a lossy cavity,” Phys. Rev. A 79, 032310 (2009). [CrossRef]
  16. J. Cho, D. G. Angelakis, and S. Bose, “Heralded generation of entanglement with coupled cavities,” Phys. Rev. A 78, 022323 (2008). [CrossRef]
  17. F. Le Kien and K. Hakuta, “Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity,” Phys. Rev. A 84, 053801 (2011). [CrossRef]
  18. M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom–photon, atom–atom, and photon–photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005). [CrossRef]
  19. X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003). [CrossRef]
  20. S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008). [CrossRef]
  21. G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009). [CrossRef]
  22. A. Delgado, C. Saavedra, and J. C. Retamal, “Quantum information and entanglement transfer for qutrits,” Phys. Lett. A 370, 22–27 (2007). [CrossRef]
  23. S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003). [CrossRef]
  24. S. B. Zheng, “Production of entanglement of multiple three-level atoms with a two-mode cavity,” Commun. Theor. Phys. 45, 539–541 (2006). [CrossRef]
  25. X. M. Lin, Z. W. Zhou, Y. C. Wu, C. Z. Wang, and G. C. Guo, “Preparation of two-qutrit entangled state in cavity QED,” Chin. Phys. Lett. 22, 1318–1320 (2005). [CrossRef]
  26. S. B. Zheng, “Generation of three-dimensional entangled states for two atoms trapped in different cavities,” Chin. Phys. Lett. 22, 3064–3066 (2005). [CrossRef]
  27. S. B. Zheng, “Production of three-dimensional maximal entanglement for two cavity modes,” Chin. Phys. Lett. 23, 610–611 (2006). [CrossRef]
  28. S. B. Zheng, “Production of three-dimensional entanglement for two atoms with a single resonant interaction,” Phys. Lett. A 370, 110–112 (2007). [CrossRef]
  29. H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum computation and entangled-state generation through photon emission and absorption processes in separated cavities,” Int. J. Theor. Phys. 49, 2723–2733 (2010). [CrossRef]
  30. Y. Q. Zhang, Z. Jin, S. Zhang, K. H. Yeon, and S. C. Yu, “Generation of a three-dimensional N-atom GHZ state based on optical-fiber-connected cavity quantum electrodynamics,” Phys. Scripta 84, 065009 (2011). [CrossRef]
  31. Z. H. Chen and X. M. Lin, “Generating entangled states of multilevel atoms through a selective atom–field interaction,” Chin. Phys. Lett. 28, 010304 (2011). [CrossRef]
  32. D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85, 4418–4421 (2000). [CrossRef]
  33. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002). [CrossRef]
  34. T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69, 032313 (2004). [CrossRef]
  35. M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003). [CrossRef]
  36. L. B. Chen, P. Shi, C. H. Zheng, and Y. J. Gu, “Generation of three-dimensional entangled state between a single atom and a Bose–Einstein condensate via adiabatic passage,” Opt. Express 20, 14547–14555 (2012). [CrossRef]
  37. L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284, 5020–5023 (2011). [CrossRef]
  38. S. S. Ma, M. F. Chen, and X. P. Jiang, “One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics,” Chin. Phys. B 20, 120308 (2011). [CrossRef]
  39. W. A. Li, “Distributed qutrit–qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011). [CrossRef]
  40. A. S. Zheng, X. Y. Hao, and X. Y. Lü, “Generation of three-dimensional entanglement with spin qubits coupled to a bimodal microsphere cavity,” J. Phys. B 44, 165507 (2011). [CrossRef]
  41. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002). [CrossRef]
  42. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007). [CrossRef]
  43. T. Wilk, “Quantum interface between an atom and a photon,” Ph.D. thesis, Max-Planck-Institut fur Quantenoptik (2008).
  44. B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009). [CrossRef]
  45. J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006). [CrossRef]
  46. M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998). [CrossRef]
  47. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005). [CrossRef]
  48. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007). [CrossRef]
  49. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Observation of entanglement of a single photon with a trapped atom,” Phys. Rev. Lett. 96, 030404 (2006). [CrossRef]
  50. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428, 50–52 (2004). [CrossRef]
  51. M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schöner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008). [CrossRef]
  52. M. Khudaverdyan, “A controlled one and two atom-cavity system,” Ph.D. thesis, Institute for Applied Physics, University of Bonn (2009).
  53. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  54. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited