OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 904–908

Parametric compensation of power losses in surface plasmon polaritons

A. T. Georges  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 904-908 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical study is presented for parametric compensation of power losses in surface plasmon polaritons (SPPs) along single metal–dielectric interfaces. An optical or near-infrared signal SPP with subwavelength transverse confinement and an idler SPP with 2–3 times longer wavelength are amplified parametrically by a broadside laser pump. Despite the fact that Drude losses are much higher than parametric gain, there is more than tenfold enhancement of the signal SPP propagation length, albeit at a reduced but detectable signal power level. Numerical results are presented for a silver surface interfaced with a polymer/dye or porous silicon layer that allow phase matching of the noncollinear parametric process.

© 2013 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Surface Plasmons

Original Manuscript: December 17, 2012
Manuscript Accepted: January 21, 2013
Published: March 14, 2013

A. T. Georges, "Parametric compensation of power losses in surface plasmon polaritons," J. Opt. Soc. Am. B 30, 904-908 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  3. M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64(2), 39–44 (2011). [CrossRef]
  4. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012). [CrossRef]
  5. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012). [CrossRef]
  6. K. Leosson, “Optical amplification of surface plasmon polaritons: review,” J. Nanophoton. 6, 61801–61809 (2012). [CrossRef]
  7. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401–177404 (2005). [CrossRef]
  8. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef]
  9. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, Ch. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009). [CrossRef]
  10. R. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35, 1197–1199 (2010). [CrossRef]
  11. I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633–18641 (2010). [CrossRef]
  12. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent,” Nat. Photonics 4, 457–461 (2010). [CrossRef]
  13. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, “Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide,” Opt. Express 19, 2858–2865 (2011). [CrossRef]
  14. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B 29, 1606–1611 (2012). [CrossRef]
  15. A. T. Georges, “Theory of nonlinear excitation of surface plasmon polaritons by four-wave mixing,” J. Opt. Soc. Am. B 28, 1603–1606 (2011). [CrossRef]
  16. A. T. Georges and N. E. Karatzas, “Optimizing the excitation of surface plasmon polaritons by difference-frequency generation on a gold surface,” Phys. Rev. B 85, 155442–155446 (2012). [CrossRef]
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  18. A. F. Mansour, M. H. El Gazaly, M. Gaber, and R. M. Ahmed, “Characterization of polymer films for fluorescent solar-concentrator applications,” Int. J. Polym. Mater. 54, 237–246 (2005). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  20. http://refractiveindex.info .
  21. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic generation measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited