OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 909–913

Surface plasmon polaritons and optical transmission through a vortex lattice in a film of type-II superconductor

Oleg L. Berman, Yurii E. Lozovik, Anton A. Kolesnikov, Maria V. Bogdanova, and Rob D. Coalson  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 909-913 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000909


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of optical transmission through an array of vortices in a type-II superconducting film subjected to a strong magnetic field is analyzed. The mechanism responsible for this effect is resonance transmission between two surface plasmon polaritons (SPPs) in the system. The SPP band gap in the system is studied as a function of magnetic field. The transmittance through a system consisting of one vortex embedded in such a film is computed using the finite difference time domain method. The control of transmission by varying magnetic field is analyzed. Applications of the studied phenomena for developing tunable sensors are discussed.

© 2013 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(160.3918) Materials : Metamaterials

ToC Category:
Thin Films

History
Original Manuscript: November 14, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: December 18, 2012
Published: March 14, 2013

Citation
Oleg L. Berman, Yurii E. Lozovik, Anton A. Kolesnikov, Maria V. Bogdanova, and Rob D. Coalson, "Surface plasmon polaritons and optical transmission through a vortex lattice in a film of type-II superconductor," J. Opt. Soc. Am. B 30, 909-913 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  3. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef]
  4. A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, 1988).
  5. D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721–779 (2005). [CrossRef]
  6. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003). [CrossRef]
  7. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef]
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  9. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alherhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993). [CrossRef]
  10. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: The Road from Theory to Practice (Princeton University, 1995).
  11. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  12. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003). [CrossRef]
  13. H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Phys. Rev. B 67, 245109 (2003). [CrossRef]
  14. H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B 70, 085109 (2004). [CrossRef]
  15. O. L. Berman, Yu. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: numerical calculations of the band structure,” Phys. Rev. B 74, 092505 (2006). [CrossRef]
  16. Yu. E. Lozovik, S. L. Eiderman, and M. Willander, “The two-dimensional superconducting photonic crystal,” Laser Phys. 17, 1183–1186 (2007). [CrossRef]
  17. O. L. Berman, V. S. Boyko, R. Ya. Kezerashvili, and Yu. E. Lozovik, “Anomalous far-infrared monochromatic transmission through a film of type-II superconductor in magnetic field,” Phys. Rev. B 78, 094506 (2008). [CrossRef]
  18. A. L. Dobryakov, V. M. Farztdinov, and Yu. E. Lozovik, “Energy gap in the optical spectrum of superconductors,” Phys. Rev. B 47, 11515–11517 (1993). [CrossRef]
  19. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87, 034102 (2005). [CrossRef]
  20. U. Patel, Z. L. Xiao, J. Hua, T. Xu, D. Rosenmann, V. Novosad, J. Pearson, U. Welp, W. K. Kwok, and G. W. Crabtre, “Origin of the matching effect in a superconducting film with a hole array,” Phys. Rev. B 76, 020508(R) (2007). [CrossRef]
  21. V. A. Yampolskii, A. V. Kats, M. L. Nesterov, A. Yu. Nikitin, T. M. Slipchenko, S. Savel’ev, and F. Nori, “Resonance effects due to the excitation of surface Josephson plasma waves in layered superconductors,” Phys. Rev. B 79, 214501 (2009). [CrossRef]
  22. Z. Tian, R. Singh, J. Han, J. Gu, Q. Xing, J. Wu, and W. Zhang, “Terahertz superconducting plasmonic hole array,” Opt. Lett. 35, 3586–3588 (2010). [CrossRef]
  23. J. Wu, H. Dai, H. Wang, B. Jin, T. Jia, C. Zhang, C. Cao, J. Chen, L. Kang, W. Xu, and P. Wu, “Extraordinary terahertz transmission in superconducting subwavelength hole array,” Opt. Express 19, 1101–1106 (2011). [CrossRef]
  24. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  25. P. Dai, M. Yethiraj, H. A. Mook, T. B. Lindemer, and F. Doğan, “Magnetic dynamics in underdoped YBa2Cu3O7−x: direct observation of a superconducting gap,” Phys. Rev. Lett. 77, 5425–5428 (1996). [CrossRef]
  26. P. G. De Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, 1966).
  27. M. D. Lan, J. Z. Liu, and R. N. Shelton, “Effects of Cu substitution by Fe on the magnetic properties of YBa2Cu3O7−y single crystals,” Phys. Rev. B 43, 12989–12993 (1991). [CrossRef]
  28. M. D. Lan, J. Z. Liu, R. N. Shelton, H. B. Radousky, B. W. Veal, and J. W. Downey, “Effects of Cu substitution by Fe on the magnetic properties of YBa2Cu3O7−y single crystals,” Phys. Rev. B 46, 11919–11922 (1992). [CrossRef]
  29. P. A. Lee and X. G. Wen, “Unusual superconducting state of underdoped cuprates,” Phys. Rev. Lett. 78, 4111–4114 (1997). [CrossRef]
  30. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  31. Y. S. Jung, Z. Sun, H. K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett. 87, 263116 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited