OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 914–921

Self-Q-switched Cr:LiCAF laser

Ersen Beyatli, Alphan Sennaroglu, and Umit Demirbas  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 914-921 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000914


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report self-Q-switched operation of a Cr:LiCAF laser for the first time to our knowledge. Self-Q-switching (SQS) refers to the generation of a periodic train of Q-switched pulses from a laser cavity containing only the gain medium. Since SQS does not require any additional elements such as saturable absorbers or active modulators, it is far simpler and lower cost in comparison with other Q-switching methods. In the experiments, SQS operation was observed by using an x-shaped, astigmatically compensated laser cavity which contained only the Cr:LiCAF gain medium. A 140 mW, single-mode continuous wave (cw) diode at 660 nm was used as the pump source. In typical cw operation, the Cr:LiCAF laser produced output powers as high as 50 mW with about 50% slope efficiency. The laser had a diffraction-limited output and had a spectral width of about 0.5 nm near 795 nm. SQS operation could be initiated by fine tuning of the separation between the curved mirrors of the cavity and occurred at several discrete separations of the curved mirrors within the stability range of the resonator. Pulsed pumping of the pump diode, active cooling of the gain medium, and/or misalignment of the cavity end mirrors was not necessary to initiate SQS operation. In the SQS regime, the Cr:LiCAF laser produced about 5 μs wide pulses at repetition rates between 10 and 30 kHz. The corresponding pulse energies and peak powers were as high as 3.75 μJ and 590 mW, respectively. SQS operation was further accompanied with (i) a decrease in the output power to the 30–45 mW range, (ii) an increase of the spectral bandwidth up to 10 nm (full width at half-maximum), and (iii) a switching of the laser output from pure TEM00 to a structured beam containing higher-order spatial modes. We present detailed experimental data describing the temporal, spectral, and spatial characteristics of the SQS Cr:LiCAF laser, as well as the effect of curved mirror separation on SQS. The power-dependent repetition rate data were further analyzed to estimate the effective small-signal loss coefficient of the saturable absorber action.

© 2013 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials
(160.4760) Materials : Optical properties
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 20, 2012
Revised Manuscript: February 1, 2013
Manuscript Accepted: February 2, 2013
Published: March 14, 2013

Citation
Ersen Beyatli, Alphan Sennaroglu, and Umit Demirbas, "Self-Q-switched Cr:LiCAF laser," J. Opt. Soc. Am. B 30, 914-921 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-914


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).
  2. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995). [CrossRef]
  3. K. Du, D. Li, H. Zhang, P. Shi, X. Wei, and R. Diart, “Electro-optically Q-switched NdYVO 4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003). [CrossRef]
  4. A. Sennaroglu, “Broadly tunable Cr4+ doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002). [CrossRef]
  5. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54 μm Er:glass lasers,” Opt. Lett. 24, 960–962 (1999). [CrossRef]
  6. H. Cankaya, U. Demirbas, A. K. Erdamar, and A. Sennaroglu, “Absorption saturation analysis of Cr2+:ZnSe and Fe2+:ZnSe,” J. Opt. Soc. Am. B 25, 794–800 (2008). [CrossRef]
  7. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]
  8. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996). [CrossRef]
  9. I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388–390 (1968). [CrossRef]
  10. R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968). [CrossRef]
  11. M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968). [CrossRef]
  12. A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. 4, 692–698 (1968). [CrossRef]
  13. H. Samelson, A. Lempicki, and V. Brophy, “Self-Q-switching of ND3+ SEOCL2 liquid laser,” J. Appl. Phys. 39, 4029–4030 (1968). [CrossRef]
  14. M. Birnbaum and C. L. Fincher, “Self-q-switched ND3+—YAG and ruby lasers,” Proc. IEEE 57, 804–805 (1969). [CrossRef]
  15. A. L. Mikaelyan, V. F. Kuprishov, Y. G. Turkov, Y. V. Andreev, and A. A. Shcherbakova, “New method for generating a giant pulse in optical generators,” J. Exp. Theor. Phys. Lett. 11, 244–246 (1970).
  16. Z. Zalevsky, Y. Kapellner, I. Eyal, and N. Cohen, “Self Q-switching effect in a Nd:YVO4/KTP lasing unit,” Opt. Eng. 45, 070506 (2006). [CrossRef]
  17. A. Szabo, “Repetitive self-Q-switching in a continuously pumped ruby-laser,” J. Appl. Phys. 49, 533–538 (1978). [CrossRef]
  18. B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996). [CrossRef]
  19. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6: Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998). [CrossRef]
  20. R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23, 457–459 (1998). [CrossRef]
  21. A. V. Kir’yanov, N. N. Il’ichev, and Y. O. Barmenkov, “Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,” Laser Phys. Lett. 1, 194–198 (2004). [CrossRef]
  22. S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt, “Self-pulsation in broad area lasers with transverse-mode selective feedback,” Opt. Commun. 265, 642–648 (2006). [CrossRef]
  23. B. N. Upadhyaya, A. Kuruvilla, U. Chakravarty, M. R. Shenoy, K. Thyagarajan, and S. M. Oak, “Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser,” Appl. Opt. 49, 2316–2325 (2010). [CrossRef]
  24. Y. Tang and J. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27, 179–186 (2010). [CrossRef]
  25. N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aït-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703–707 (2006). [CrossRef]
  26. N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047–5059 (2004). [CrossRef]
  27. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531–538 (2004). [CrossRef]
  28. M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun. 191, 305–314 (2001). [CrossRef]
  29. T. Godin, R. Moncorgé, J.-L. Doualan, M. Fromager, K. Ait-Ameur, R. A. Cruz, and T. Catunda, “Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby,” J. Opt. Soc. Am. B 29, 1055–1064 (2012). [CrossRef]
  30. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988). [CrossRef]
  31. J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of Scattering Centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991). [CrossRef]
  32. D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409–416 (1998). [CrossRef]
  33. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005). [CrossRef]
  34. U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “A low-cost, broadly-tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51, 8440–8448 (2012). [CrossRef]
  35. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000). [CrossRef]
  36. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011). [CrossRef]
  37. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers,” J. Opt. Soc. Am. B 26, 64–79 (2009). [CrossRef]
  38. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994). [CrossRef]
  39. B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q -switched 180 ps Nd:LaSc3(BO3)4 microchip laser,” Opt. Lett. 21, 405–407 (1996). [CrossRef]
  40. B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997). [CrossRef]
  41. A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill, 2010).
  42. K. J. Weingarten, B. Braun, and U. Keller, “In-situ Small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19, 1140–1142 (1994). [CrossRef]
  43. A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 m,” J. Appl. Phys. 47, 232–234 (1976). [CrossRef]
  44. M. Traiche, T. Godin, M. Fromager, R. Moncorgé, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011). [CrossRef]
  45. T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012). [CrossRef]
  46. N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257–258 (2004). [CrossRef]
  47. S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902(2007). [CrossRef]
  48. H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610(1992). [CrossRef]
  49. E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990). [CrossRef]
  50. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited