OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 922–927

Efficient broadband Raman pulses for large-area atom interferometry

David L. Butts, Krish Kotru, Joseph M. Kinast, Antonije M. Radojevic, Brian P. Timmons, and Richard E. Stoner  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 922-927 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000922


View Full Text Article

Acrobat PDF (658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a demonstration of composite Raman pulses that achieve broadband population inversion and are used to increase the momentum splitting of an atom interferometer up to 18ℏk (corresponding to an increase in the inertial signal by a factor of nine). Composite Raman pulses suppress the effects of pulse length and detuning errors, providing higher transfer efficiency and velocity acceptance than single square pulses. We implement two composite pulse sequences, π/2−π90°−π/2 and π/2−π180°−3π/2, and use the latter composite pulse to demonstrate large-area atom interferometry with stimulated Raman transitions. In addition to enabling larger momentum transfer and higher sensitivity, we argue that composite pulses can improve the robustness of atom interferometers operating in dynamic environments.

© 2013 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 21, 2012
Revised Manuscript: February 2, 2013
Manuscript Accepted: February 2, 2013
Published: March 14, 2013

Citation
David L. Butts, Krish Kotru, Joseph M. Kinast, Antonije M. Radojevic, Brian P. Timmons, and Richard E. Stoner, "Efficient broadband Raman pulses for large-area atom interferometry," J. Opt. Soc. Am. B 30, 922-927 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-922


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Peters, K. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852(1999). [CrossRef]
  2. T. Gustavson, A. Landragin, and M. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000). [CrossRef]
  3. J. Fixler, G. Foster, J. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007). [CrossRef]
  4. D. L. Butts, J. M. Kinast, B. P. Timmons, and R. E. Stoner, “Light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 416–421 (2011). [CrossRef]
  5. H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012). [CrossRef]
  6. B. Young, M. Kasevich, and S. Chu, Precision Atom Interferometry with Light Pulses (Academic, 1997), pp. 363–406.
  7. H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008). [CrossRef]
  8. T. Kovachy, S.-W. Chiow, and M. A. Kasevich, “Adiabatic-rapid-passage multiphoton Bragg atom optics,” Phys. Rev. A 86, 011606 (2012). [CrossRef]
  9. S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett. 107, 130403 (2011). [CrossRef]
  10. P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “Large momentum beam splitter using Bloch oscillations,” Phys. Rev. Lett. 102, 240402 (2009). [CrossRef]
  11. D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip-based system for high repetition rate production of Bose–Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010). [CrossRef]
  12. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000). [CrossRef]
  13. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002). [CrossRef]
  14. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986). [CrossRef]
  15. L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005). [CrossRef]
  16. A. J. Shaka, J. Keeler, T. Frenkiel, and R. Freeman, “An improved sequence for broadband decoupling: WALTZ-16,” J. Magn. Reson. 52, 335–338 (1983).
  17. M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979). [CrossRef]
  18. A. J. Shaka, J. Keeler, and R. Freeman, “Evaluation of a new broadband decoupling sequence: WALTZ-16,” J. Magn. Reson. 53, 313–340 (1983). [CrossRef]
  19. K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis (Stanford University, 2008), pp. 70–73.
  20. R. Stoner, D. Butts, J. Kinast, and B. Timmons, “Analytical framework for dynamic light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 2418–2429 (2011). [CrossRef]
  21. T. Lévèque, A. Gauguet, F. Michaud, F. Pereira Dos Santos, and A. Landragin, “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique,” Phys. Rev. Lett. 103, 080405 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited