OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 939–944

Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride

Guang-Zong Dong, Xin-Lu Zhang, and Li Li  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 939-944 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000939


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a theoretical scheme for laser cooling of solids based on energy transfer usually found in rare-earth codoped materials. The cooling scheme enables a large enhancement in the cooling efficiency with regard to the standard anti-Stokes fluorescence cooling. A Ho3+ and Tm3+-codoped low-phonon crystal (LiYF4) sample is investigated to find that the cooling efficiency increases, and then decreases with the increasing of the resonant absorption. The optimal cooling efficiency is predicted to exceed 5%. The maximum cooling power density could be promoted greatly by applying the codoped cooling scheme. The cooling scheme is also valid for other rare-earth (for example, Tm3+ and Er3+, or Er3+ and Yb3+) codoped materials.

© 2013 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.6810) Lasers and laser optics : Thermal effects
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 30, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: February 10, 2013
Published: March 14, 2013

Citation
Guang-Zong Dong, Xin-Lu Zhang, and Li Li, "Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride," J. Opt. Soc. Am. B 30, 939-944 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-939


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012). [CrossRef]
  2. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  3. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).
  4. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968). [CrossRef]
  5. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  6. A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002). [CrossRef]
  7. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86, 154107 (2005). [CrossRef]
  8. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603(2000). [CrossRef]
  9. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16, 1704–1710 (2008). [CrossRef]
  10. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006). [CrossRef]
  11. M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE. 7614, 761404 (2010). [CrossRef]
  12. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19, 18229–18236 (2011). [CrossRef]
  13. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE. 7228, 72280E (2009). [CrossRef]
  14. B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 021401 (2004). [CrossRef]
  15. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010). [CrossRef]
  16. X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006). [CrossRef]
  17. A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009). [CrossRef]
  18. G. Nemova and R. Kashyap, “Laser cooling of Er3+-doped solids,” Opt. Commun. 283, 3736–3739 (2010). [CrossRef]
  19. E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005). [CrossRef]
  20. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011). [CrossRef]
  21. S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013). [CrossRef]
  22. M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, “Quantum-mechanical theory of optomechanical Brillouin cooling,” Phys. Rev. A 84, 063806 (2011). [CrossRef]
  23. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “On the distribution of energy between the Tm F43 and Ho I75 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75, 89–98 (1997). [CrossRef]
  24. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004). [CrossRef]
  25. M. Faiconieri and G. Salvetti, “Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho: YLF crystals,” Appl. Phys. A 59, 253–258(1994). [CrossRef]
  26. R. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
  27. C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003). [CrossRef]
  28. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “The temperature dependence of energy transfer between the Tm F43 and Ho I75 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000). [CrossRef]
  29. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010). [CrossRef]
  30. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f−4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983). [CrossRef]
  31. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited