OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 959–966

Continuous wave supercontinuum generation pumped in the normal group velocity dispersion regime on a highly nonlinear fiber

Margarida Facão, Maria Inês Carvalho, Gil Martins Fernandes, Ana Maria Rocha, and Armando Nolasco Pinto  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 959-966 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000959


View Full Text Article

Enhanced HTML    Acrobat PDF (4306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have obtained spectral broadening by pumping a nonmicrostructured highly nonlinear fiber with a continuous wave signal from a Raman fiber laser. The experiment was simulated using a generalized Schrödinger equation containing the actual Raman response of the fiber as calculated from the experimental Raman gain. A different input-noise model, that reproduces well the power spectral density of the laser, was used and compared with others previously proposed.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 10, 2012
Manuscript Accepted: January 28, 2013
Published: March 18, 2013

Citation
Margarida Facão, Maria Inês Carvalho, Gil Martins Fernandes, Ana Maria Rocha, and Armando Nolasco Pinto, "Continuous wave supercontinuum generation pumped in the normal group velocity dispersion regime on a highly nonlinear fiber," J. Opt. Soc. Am. B 30, 959-966 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-959


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via fourphoton coupling in glass,” Phys. Rev. Lett. 24, 584587 (1970).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  3. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010). [CrossRef]
  4. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27, 592–598 (2010). [CrossRef]
  5. E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, “Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability,” J. Opt. Soc. Am. B 29, 502–512 (2012). [CrossRef]
  6. B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12, 2166–2175 (2004). [CrossRef]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  8. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003). [CrossRef]
  9. G. Busch, R. Jones, and P. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett. 18, 178–185 (1973). [CrossRef]
  10. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002). [CrossRef]
  11. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002). [CrossRef]
  12. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12, 3471–3480 (2004). [CrossRef]
  13. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent cw laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004). [CrossRef]
  14. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005). [CrossRef]
  15. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005). [CrossRef]
  16. A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long raman fiber cavities,” Opt. Express 17, 17909–17915 (2009). [CrossRef]
  17. A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863–4865 (2004). [CrossRef]
  18. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). [CrossRef]
  19. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). [CrossRef]
  20. J. Travers, S. Popov, and J. Taylor, “A new model for cw supercontinuum generation,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science (IEEE, 2008), pp. 1–2.
  21. G. Vannucci and M. C. Teich, “Computer simulation of superposed coherent and cahotic radiation,” Appl. Opt. 19, 548–553(1980). [CrossRef]
  22. N. Silva, N. Muga, and A. Pinto, “Effective nonlinear parameter measurement using fwm in optical fibers in a low power regime,” IEEE J. Quantum Electron. 46, 285–291 (2010). [CrossRef]
  23. J. Nicholson, A. Abeeluck, C. Headley, M. Yan, and C. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003). [CrossRef]
  24. A. K. Abeeluck, and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersionregimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30, 61–63 (2005). [CrossRef]
  25. G. P. Agrawal, Nonlinear fiber optics (Academic, 1995).
  26. C. R. Menyuk, M. N. Islam, and J. P. Gordon, “Raman effect in birefringent optical fibers,” Opt. Lett. 16, 566–568 (1991). [CrossRef]
  27. R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975). [CrossRef]
  28. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13, 2170–2177 (1996). [CrossRef]
  29. M. Facão, A. Lopes, A. L. Silva, and P. Silva, “Computer simulation for calculating the second-order correlation function of classical and quantum light,” Eur. J. Phys. 32, 925–934(2011). [CrossRef]
  30. S. Coen, S. G. Murdoch, and F. Vanholsbeeck, “Interaction of four-wave mixing and stimulated Raman scattering in optical fibers,” in Supercontinuum generation in optical fibers (Cambridge University, 2010), pp. 199–225.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited