OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 994–999

Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study

Donatas Majus and Audrius Dubietis  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 994-999 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comparative experimental study of spectral broadening and supercontinuum (SC) generation in 3-mm-thick sapphire crystal using 800 nm, 130 fs pulses in low-numeric-aperture focused Gaussian and axicon-generated Bessel beam geometry. Despite the markedly higher input energy used in the case of the Bessel beam, the dynamics of spectral broadening appears to be very similar in both cases, eventually producing a flat SC spanning across the visible and near-infrared spectral range with low shot-to-shot fluctuations (standard deviation 1%) of the spectral intensity. The statistical analysis performed at different stages of the spectral broadening reveals that shot-to-shot fluctuations of the spectral intensity are associated with four-wave-mixing-induced spectral correlations.

© 2013 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optics

Original Manuscript: January 25, 2013
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 22, 2013
Published: March 22, 2013

Donatas Majus and Audrius Dubietis, "Statistical properties of ultrafast supercontinuum generated by femtosecond Gaussian and Bessel beams: a comparative study," J. Opt. Soc. Am. B 30, 994-999 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano and S. L. Shapiro, “Emission in the region of 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970). [CrossRef]
  2. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983). [CrossRef]
  3. G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,” Appl. Opt. 32, 4507–4512 (1993). [CrossRef]
  4. M. Wittmann and A. Penzkofer, “Spectral supebroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996). [CrossRef]
  5. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999). [CrossRef]
  6. C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41, 3735–3742 (2002). [CrossRef]
  7. X.-J. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in a filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77, 167–170 (2003). [CrossRef]
  8. V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003). [CrossRef]
  9. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Theory and simulation of supercontinuum generation in transparent bulk media,” Appl. Phys. B 77, 185–195 (2003). [CrossRef]
  10. A. K. Dharmadhikari, F. A. Rajgara, N. C. S. Reddy, A. S. Sandhu, and D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12, 695–700 (2004). [CrossRef]
  11. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white-light generation in transparent materials using intense femtosecond pulses,” Appl. Phys. B 80, 61–66 (2005). [CrossRef]
  12. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009). [CrossRef]
  13. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Valée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003). [CrossRef]
  14. J. B. Achcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23, 2317–2322 (2006). [CrossRef]
  15. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  16. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996). [CrossRef]
  17. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: nultiple splittings, coalescence and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999). [CrossRef]
  18. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000). [CrossRef]
  19. A. Brodeur, and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998). [CrossRef]
  20. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond pulse in condensed matter,” Opt. Commun. 202, 189–197 (2002). [CrossRef]
  21. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003). [CrossRef]
  22. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  23. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6, 607–621(2012). [CrossRef]
  24. P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99, 223902 (2007). [CrossRef]
  25. P. Polesana, M. Franco, A. Couairon, D. Faccio, and P. Di Trapani, “Filamentation in Kerr media from pulsed Bessel beams,” Phys. Rev. A 77, 043814 (2008). [CrossRef]
  26. Z. M. Song, Z. G. Zhang, and T. Nakajima, “Transverse-mode dependence of femtosecond filamentation,” Opt. Express 17, 12217–12229 (2009). [CrossRef]
  27. D. Faccio, E. Rubino, A. Lotti, A. Couairon, A. Dubietis, G. Tamosauskas, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear light-matter interaction with femtosecond high-angle Bessel beams,” Phys. Rev. A 85, 033829 (2012). [CrossRef]
  28. P. Polesana, A. Dubietis, M. A. Porras, E. Kučinskas, D. Faccio, A. Couairon, and P. Di Trapani, “Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity,” Phys. Rev. E 73, 056612 (2006). [CrossRef]
  29. A. Dubietis, P. Polesana, G. Valiulis, A. Stabinis, P. Di Trapani, and A. Piskarskas, “Axial emission and spectral broadening in self-focusing of femtosecond Bessel beams,” Opt. Express 15, 4168–4175 (2007). [CrossRef]
  30. I. Blonskyi, V. Kadan, I. Dmitruk, and P. Korenyuk, “Cherenkov phase-matching in Raman-seeded four-wave mixing by a femtosecond Bessel beam,” Appl. Phys. B 107, 649–652 (2012). [CrossRef]
  31. K. Dota, A. Pathak, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Femtosecond laser filamentation in condensed media with Bessel beams,” Phys. Rev. A 86, 023808 (2012). [CrossRef]
  32. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29, 602–604 (2004). [CrossRef]
  33. O. Uteza, B. Bussière, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007). [CrossRef]
  34. D. Faccio, A. Averchi, A. Couairon, A. Dubietis, R. Piskarskas, A. Matijosius, F. Bragheri, M. A. Porras, A. Piskarskas, and P. Di Trapani, “Competition between phase-matching and stationarity in Kerr-driven optical pulse filamentation,” Phys. Rev. E 74, 047603 (2006). [CrossRef]
  35. S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of self-phase matching,” Phys. Rev. A 51, R2707 (1995). [CrossRef]
  36. M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear unbalanced Bessel beams: stationary conical waves supported by nonlinear losses,” Phys. Rev. Lett. 93, 153902 (2004). [CrossRef]
  37. D. Majus, V. Jukna, E. Pileckis, G. Valiulis, and A. Dubietis, “Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire,” Opt. Express 19, 16317–16323 (2011). [CrossRef]
  38. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96, 215–231 (2009). [CrossRef]
  39. P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, and J.-P. Wolf, “Laser noise reduction in air,” Appl. Phys. Lett. 88, 251112 (2006). [CrossRef]
  40. P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007). [CrossRef]
  41. D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett. 96, 193901 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited