OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1092–1101

Effects of initial environmental correlations in the dynamics of open systems

Zhong-Xiao Man, Nguyen Ba An, and Yun-Jie Xia  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1092-1101 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001092


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we study the effects of different forms of correlations of environments on the dynamics of open systems’ entanglement and discord. We consider two two-level atoms A and B interacting, respectively with two spatially separated modes a and b, each of which is in turn surrounded by a dissipative reservoir. The two modes may initially be in an entangled or classically correlated or product state with their marginal state being the same in all the cases. We compare the power of different environmental correlation forms in the revival of the atoms’ entanglement and discord in the strong atom–mode coupling regime. We also show how the dynamical behavior of the atoms’ entanglement and discord nontrivially change by the presence of initial environmental correlation in the weak atom–mode coupling regime. Finally, we reveal that initial entanglement between the modes can induce correlations between initially uncorrelated atoms.

© 2013 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 20, 2012
Revised Manuscript: February 20, 2013
Manuscript Accepted: March 1, 2013
Published: April 2, 2013

Citation
Zhong-Xiao Man, Nguyen Ba An, and Yun-Jie Xia, "Effects of initial environmental correlations in the dynamics of open systems," J. Opt. Soc. Am. B 30, 1092-1101 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1092


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).
  2. O. Jiménez Farías, A. Valdés-Hernández, G. H. Aguilar, P. H. Souto Ribeiro, S. P. Walborn, L. Davidovich, X. F. Qian, and J. H. Eberly, “Experimental investigation of dynamical invariants in bipartite entanglement,” Phys. Rev. A 85, 012314 (2012). [CrossRef]
  3. C. Viviescas, I. Guevara, A. R. R. Carvalho, M. Busse, and A. Buchleitner, “Entanglement dynamics in open two-qubit systems via diffusive quantum trajectories,” Phys. Rev. Lett. 105, 210502 (2010). [CrossRef]
  4. Q. H. Chen, Y. Yang, T. Liu, and K. L. Wang, “Entanglement dynamics of two independent Jaynes–Cummings atoms without the rotating-wave approximation,” Phys. Rev. A 82, 052306 (2010). [CrossRef]
  5. J. S. Xu, C. F. Li, X. Y. Xu, C. H. Shi, X. B. Zou, and G. C. Guo, “Experimental characterization of entanglement dynamics in noisy channels,” Phys. Rev. Lett. 103, 240502 (2009). [CrossRef]
  6. A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, “Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment,” Phys. Rev. A 78, 022322 (2008). [CrossRef]
  7. J. P. Paz and A. J. Roncaglia, “Dynamics of the entanglement between two oscillators in the same environment,” Phys. Rev. Lett. 100, 220401 (2008). [CrossRef]
  8. B. Bellomo, R. Lo Franco, and G. Compagno, “Entanglement dynamics of two independent qubits in environments with and without memory,” Phys. Rev. A 77, 032342 (2008). [CrossRef]
  9. B. Bellomo, R. Lo Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007). [CrossRef]
  10. N. B. An and J. Kim, “Finite-time and infinite-time disentanglement of multipartite Greenberger–Horne–Zeilinger-type states under the collective action of different types of noise,” Phys. Rev. A 79, 022303 (2009). [CrossRef]
  11. Z. X. Man, Y. J. Xia, and N. B. An, “Entanglement measure and dynamics of multiqubit systems: non-Markovian versus Markovian and generalized monogamy relations,” New J. Phys. 12, 033020 (2010). [CrossRef]
  12. N. B. An, J. Kim, and K. Kim, “Nonperturbative analysis of entanglement dynamics and control for three qubits in a common lossy cavity,” Phys. Rev. A 82, 032316 (2010). [CrossRef]
  13. N. B. An, J. Kim, and K. Kim, “Entanglement dynamics of three interacting two-level atoms within a common structured environment,” Phys. Rev. A 84, 022329 (2011). [CrossRef]
  14. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009). [CrossRef]
  15. F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010). [CrossRef]
  16. J. Maziero, T. Werlang, F. F. Fanchini, L. C. Céleri, and R. M. Serra, “System–reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010). [CrossRef]
  17. J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009). [CrossRef]
  18. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010). [CrossRef]
  19. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 7 (2010). [CrossRef]
  20. Z. X. Man, Y. J. Xia, and N. B. An, “Quantum dissonance induced by a thermal field and its dynamics in dissipative systems,” Eur. Phys. J. D 64, 521–529 (2011). [CrossRef]
  21. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef]
  22. J. H. Eberly and T. Yu, “The end of an entanglement,” Science 316, 555–557 (2007). [CrossRef]
  23. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009). [CrossRef]
  24. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, “Environment-induced sudden death of entanglement,” Science 316, 579–582 (2007). [CrossRef]
  25. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001). [CrossRef]
  26. V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett 90, 050401 (2003). [CrossRef]
  27. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of n-level systems,” J. Math. Phys. 17, 821–825 (1976). [CrossRef]
  28. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976). [CrossRef]
  29. J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008). [CrossRef]
  30. J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009). [CrossRef]
  31. H. P. Breuer and B. Vacchini, “Quantum semi-Markov processes,” Phys. Rev. Lett. 101, 140402 (2008). [CrossRef]
  32. E.-M. Laine, J. Piilo, and H.-P. Breuer, “Measure for the non-Markovianity of quantum processes,” Phys. Rev. A 81, 062115 (2010). [CrossRef]
  33. A. Royer, “Reduced dynamics with initial correlations, and time-dependent environment and Hamiltonians,” Phys. Rev. Lett. 77, 3272–3275 (1996). [CrossRef]
  34. L. D. Romero and J. P. Paz, “Decoherence and initial correlations in quantum Brownian motion,” Phys. Rev. A 55, 4070–4083 (1997). [CrossRef]
  35. M. Ban, “Quantum master equation for dephasing of a two-level system with an initial correlation,” Phys. Rev. A 80, 064103 (2009). [CrossRef]
  36. Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system–environment correlations,” Phys. Rev. A 82, 022108 (2010). [CrossRef]
  37. A. G. Dijkstra and Y. Tanimura, “Non-Markovian entanglement dynamics in the presence of system–bath coherence,” Phys. Rev. Lett. 104, 250401 (2010). [CrossRef]
  38. H. T. Tan and W. M. Zhang, “Non-Markovian dynamics of an open quantum system with initial system-reservoir correlations: a nanocavity coupled to a coupled-resonator optical waveguide,” Phys. Rev. A 83, 032102 (2011). [CrossRef]
  39. A. R. Usha Devi, A. K. Rajagopal, and Sudha, “Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity,” Phys. Rev. A 83, 022109 (2011). [CrossRef]
  40. E.-M. Laine, J. Piilo, and H.-P. Breuer, “Witness for initial system–environment correlations in open-system dynamics,” Europhys. Lett. 92, 60010 (2010). [CrossRef]
  41. J. Dajka and J. Luczka, “Distance growth of quantum states due to initial system–environment correlations,” Phys. Rev. A 82, 012341 (2010). [CrossRef]
  42. J. Dajka, J. Luczka, and P. Hänggi, “Distance between quantum states in the presence of initial qubit–environment correlations: a comparative study,” Phys. Rev. A 84, 032120 (2011). [CrossRef]
  43. A. Smirne, H. P. Breuer, J. Piilo, and B. Vacchini, “Initial correlations in open-systems dynamics: the Jaynes–Cummings model,” Phys. Rev. A 82, 062114 (2010). [CrossRef]
  44. Z. X. Man, Y. J. Xia, A. Smirne, and B. Vacchini, “Quantum interference induced by initial system–environment correlations,” Phys. Lett. A 376, 2477–2483 (2012). [CrossRef]
  45. C. F. Li, J. S. Tang, Y. L. Li, and G. C. Guo, “Experimentally witnessing the initial correlation between an open quantum system and its environment,” Phys. Rev. A 83, 064102 (2011). [CrossRef]
  46. A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M. G. A. Paris, “Experimental investigation of initial system–environment correlations via trace-distance evolution,” Phys. Rev. A 84, 032112 (2011). [CrossRef]
  47. E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G. C. Guo, “Nonlocal memory effects in the dynamics of open quantum systems,” Phys. Rev. Lett. 108, 210402 (2012). [CrossRef]
  48. B.-H. Liu, D.-Y. Cao, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Photonic realization of nonlocal memory effects and non-Markovian quantum probes,” arXiv 1208.1358v1 (2012).
  49. C. C. Tannoudji, G. Grynberg, and J. Dupont-Roe, Atom-Photon Interactions (Wiley, 1998).
  50. L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009). [CrossRef]
  51. M. Scala, B. Militello, A. Messina, S. Maniscalco, J. Piilo, and K.-A. Suominen, “Cavity losses for the dissipative Jaynes–Cummings Hamiltonian beyond rotating wave approximation,” J. Phys. A 40, 14527 (2007). [CrossRef]
  52. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  53. D. Z. Rossatto, T. Werlang, L. K. Castelano, C. J. Villas-Boas, and F. F. Fanchini, “Purity as a witness for initial system–environment correlations in open-system dynamics,” Phys. Rev. A 84, 042113 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited