OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1118–1126

Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1118-1126 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Kinetic and fluid dynamic processes in diode-pumped alkali lasers (DPALs) are analyzed in detail using a simple, semi-analytical model, applicable to both static and flowing-gas devices. Unlike other models, it takes into account the effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease in pump absorption, slope efficiency, and lasing power. Effects of natural convection in static DPALs are also taken into account. The applicability of the model is demonstrated in Cs DPALs by (1) obtaining good agreement with measurements in static [Electron. Lett. 44, 582 (2008)] and flowing-gas [Quantum Electron. 42, 95 (2012)] DPALs, (2) predicting the dependence of power on the flow velocity in flowing-gas DPALs, and (3) checking the effect of using a buffer gas with high molar heat capacity and a large relaxation rate constant between the P 3 / 2 2 and P 1 / 2 2 fine-structure levels of the alkali atom. The power strongly increases with flow velocity and by replacing, e.g., ethane by propane as a buffer gas, the power may be further increased by up to 30%; 7 kW is achievable in a small-scale laser with 10 cm 3 of propane for a 20 kW pump at a flow velocity of 20 m/s..

© 2013 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 7, 2013
Manuscript Accepted: February 28, 2013
Published: April 4, 2013

Boris D. Barmashenko and Salman Rosenwaks, "Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers," J. Opt. Soc. Am. B 30, 1118-1126 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36, 4–28 (2012). [CrossRef]
  2. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008). [CrossRef]
  3. Q. Zhu, B. Pan, L. Chen, Y. Wang, and X. Chang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283, 2406–2410 (2010). [CrossRef]
  4. B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37, 3615–3617 (2012). [CrossRef]
  5. B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013). [CrossRef]
  6. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19, 7894–7902 (2011). [CrossRef]
  7. L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20, 1229–1248 (1987). [CrossRef]
  8. J. Hecht, “Photonic frontiers: alkali-vapor lasers: diode pumping enables new approach to alkali-vapor lasers,” Laser Focus World 4, 49–53 (2011).
  9. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012). [CrossRef]
  10. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010). [CrossRef]
  11. G. P. Perram and G. D. Hager, “Influence of broadband excitation on the performance of diode pumped alkali lasers,” in AIAA 42nd Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011 (AIAA, 2011), paper 2011-4002.
  12. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28, 1353–1364 (2011). [CrossRef]
  13. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinski, and L. D. Merkle, “End pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004). [CrossRef]
  14. N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28, 1088–1099 (2011). [CrossRef]
  15. P. Teerstra and M. M. Yovanovich, “Comprehensive review of natural convection in horizontal circular annuli,” in 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, 15–18 June 1998 (AIAA, 1998), pp. 141–152.
  16. T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transfer 19, 1127–1134 (1976). [CrossRef]
  17. Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milošević, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ→6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54, 1372–1384 (1996). [CrossRef]
  18. E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time-resolved ion collection in Cs vapor,” Opt. Commun. 55, 329–334 (1985). [CrossRef]
  19. Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, 690–697 (2002). [CrossRef]
  20. A. Z. Msezane and S. T. Manson, “Photoionization of the Cs 6d excited state,” Phys. Rev. A 29, 1594–1595 (1984). [CrossRef]
  21. A. Tam, J. Moe, and W. Happer, “Particle formation by resonant laser light in alkali-metal vapor,” Phys. Rev. Lett. 35, 1630–1633 (1975). [CrossRef]
  22. S. R. Seshadri, Fundamentals of Plasma Physics (Elsevier, 1973), pp. 416–423.
  23. G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011). [CrossRef]
  24. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972). [CrossRef]
  25. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401(2009).
  26. D. A. Steck, “Cesium D line data,” available online at http://steck.us/alkalidata .
  27. B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007). [CrossRef]
  28. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169(2007). [CrossRef]
  29. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave Rubidium vapor laser,” Opt. Express 16, 748–751 (2008). [CrossRef]
  30. “NIST Chemistry WebBook,” available online at http://webbook.nist.gov .
  31. E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for P3/22−P1/22 mixing in Cs, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).
  32. E. R. Van Artsdalen, “The carbon-carbon bond strengths in ethane, propane, and n-butane,” J. Chem. Phys. 10, 653 (1942). [CrossRef]
  33. L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, “Spectroscopic calculation of CH bond dissociation energy in the series of chloro derivatives of methane, ethane, and propane,” J. Struct. Chem. 47, 635–641 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited