OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1127–1134

Plasmonic waves on a chain of metallic nanoparticles: effects of a liquid-crystalline host

Nicholas A. Pike and David Stroud  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1127-1134 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001127


View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A chain of metallic particles, of sufficiently small diameter and spacing, allows linearly polarized plasmonic waves to propagate along the chain. In this paper, we consider how these waves are altered when the host is a nematic or cholesteric liquid crystal (NLC or CLC). In an NLC host, with the principal axis (director) oriented either parallel or perpendicular to the chain, we find that the dispersion relations of both the longitudinal (L) and transverse (T) modes are significantly altered relative to those of an isotropic host. Furthermore, when the director is perpendicular to the chain, the doubly degenerate T branch is split into two nondegenerate linearly polarized branches by the anisotropy of the host material. In a CLC liquid crystal with a twist axis parallel to the chain, the two T branches are again found to be split, but are no longer linearly polarized; the dispersion relations depend on the cholesteric pitch angle. To illustrate these results, we calculate the L and T dispersion relations for both types of liquid crystals, assuming that the metal is described by a Drude dielectric function. The formalism can, in principle, include single-particle damping and could be generalized to include radiation damping. The present work suggests that the dispersion relations of plasmonic waves on a chain of nanoparticles can be controlled by immersing the chain in an NLC or a CLC and varying the director axis or pitch angle by applying suitable external fields.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 24, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: February 28, 2013
Published: April 5, 2013

Citation
Nicholas A. Pike and David Stroud, "Plasmonic waves on a chain of metallic nanoparticles: effects of a liquid-crystalline host," J. Opt. Soc. Am. B 30, 1127-1134 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Maxwell, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Phil. Trans. R. Soc. A 155, 459–512 (1865). [CrossRef]
  2. For reviews, see, e.g., M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008), or the following two references. [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  7. Z. Y. Tang and N. A. Kotov, “One-dimensional assemblies of nanoparticles: preparation, properties, and promise,” Adv. Mater. 17, 951–962 (2005). [CrossRef]
  8. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature 451, 553–556 (2008). [CrossRef]
  9. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  10. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000). [CrossRef]
  11. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003). [CrossRef]
  12. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). [CrossRef]
  13. W. M. Saj, T. J. Antosiewicz, J. Pniewski, and T. Szoplik, “Energy transport in plasmon waveguides on chains of metal nanoplates,” Opto-Electron. Rev. 14, 243–251 (2006). [CrossRef]
  14. P. Ghenuche, R. Quidant, and G. Badenas, “Cumulative plasmon field enhancement in finite metal particle chains,” Opt. Lett. 30, 1882–1884 (2005). [CrossRef]
  15. A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  16. N. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  17. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  18. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver spheres and its possible application,” Phys. Rev. E 72, 066606 (2005). [CrossRef]
  19. F. J. G. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  20. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110, 18243–18253 (2006). [CrossRef]
  21. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15, 17482–17493 (2007). [CrossRef]
  22. J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, “Electrically controlled light scattering with single metal nanoparticles,” Appl. Phys. Lett. 81, 171–173 (2002). [CrossRef]
  23. P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsling, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005). [CrossRef]
  24. R. Pratibha, K. Park, I. I. Salyhukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express 17, 19459–19469 (2009). [CrossRef]
  25. S. Y. Park and D. Stroud, “Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005). [CrossRef]
  26. S. Y. Park and D. Stroud, “Splitting of surface plasmon frequencies of metallic particles in a nematic liquid crystal,” Appl. Phys. Lett. 85, 2920–2922 (2004). [CrossRef]
  27. D. Liu, C. Xu, and P. M. Hui, “Effects of a coating of spherically anisotropic material in core-shell particles,” Appl. Phys. Lett. 92, 181901 (2008). [CrossRef]
  28. M. Dridi and A. Vial, “FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell,” J. Phys. D 43, 415102 (2010). [CrossRef]
  29. T. G. Schaaff and R. L. Whetten, “Giant gold glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B 104, 2630–2641 (2000). [CrossRef]
  30. G. Schemer, O. Krichevski, G. Markovich, I. Lubitz, and A. B. Kotlyar, “Chirality of silver nanoparticles synthesized on DNA,” J. Am. Chem. Soc. 128, 11006–11007 (2006). [CrossRef]
  31. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, N. Barron, N. Gadegaard, and M. Kadowdwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010). [CrossRef]
  32. M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. 38, 3900–3902 (2007). [CrossRef]
  33. A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012). [CrossRef]
  34. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008). [CrossRef]
  35. Y. M. Strelniker, D. Stroud, and A. O. Voznesenskaya, “Control of extraordinary light transmission through perforated metal films using liquid crystals,” Eur. J. Phys. B 52, 1–7 (2006). [CrossRef]
  36. D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368–3373 (1975). [CrossRef]
  37. To be specific, Eq. (2) is obtained from Eq. (2.9) of [36] by setting the applied field E0=0 in that equation, and carrying out the integral over a sphere of radius a. Also Eq. (2.9) is applied to the formally analogous case of an inhomogeneous dielectric rather than an inhomogeneous conductor. Thus, the factor δσ(x′) in that equation is replaced by δ^ϵ(x′)=ϵ^−ϵ^h, and in Eq. (4), σ0 is replaced by ϵ^h, where ϵ^h=ϵh1^.
  38. Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59, R12763(1999). [CrossRef]
  39. D. Stroud, and F. P. Pan, “Effect of isolated inhomogeneities on the galvanomagnetic properties of solids,” Phys. Rev. B 13, 1434–1438 (1976). [CrossRef]
  40. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970). [CrossRef]
  41. T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E 57, 610 (1998). [CrossRef]
  42. P. Poulin and D. A. Weitz, “Inverted and multiple nematic emulsions,” Phys. Rev. E 57, 626–637 (1998). [CrossRef]
  43. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351, 387–474 (2001). [CrossRef]
  44. R. D. Kamien and T. D. Powers, “Determining the anchoring strength in a capillary using topological defects,” Liq. Cryst. 23, 213–216 (1997). [CrossRef]
  45. D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67, 1442–1445 (1991). [CrossRef]
  46. Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010). [CrossRef]
  47. Y. Mazor and B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited