OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1141–1147

Laser cooling with rare-earth-doped direct band-gap semiconductors

Galina Nemova and Raman Kashyap  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1141-1147 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001141


View Full Text Article

Enhanced HTML    Acrobat PDF (806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical scheme for laser cooling with the rare-earth-doped direct band-gap semiconductors. We consider ytterbium-doped indium phosphide (Yb3+:InP), in which the cooling process is based on thermal quenching of excited ytterbium ions. The mechanism of cooling in our system consists of laser excitation of ytterbium ions followed by thermal quenching of excited ions accompanied by phonon absorption providing cooling. The band-to-band radiative recombination finalizing the cooling cycle removes energy from the system. This approach to laser cooling of solids permits an increase in the efficiency of the cooling cycle, as well as an acceleration of the cooling process.

© 2013 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.6810) Lasers and laser optics : Thermal effects
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 5, 2012
Revised Manuscript: March 1, 2013
Manuscript Accepted: March 15, 2013
Published: April 10, 2013

Citation
Galina Nemova and Raman Kashyap, "Laser cooling with rare-earth-doped direct band-gap semiconductors," J. Opt. Soc. Am. B 30, 1141-1147 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93, 269–316 (2008). [CrossRef]
  2. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 1–18 (2008). [CrossRef]
  3. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010). [CrossRef]
  4. N. Q. Vinh, N. N. Ha, and T. Gregorkiewicz, “Photonic properties of Er-doped crystalline silicon,” Proc. IEEE 97, 1269–1283(2009). [CrossRef]
  5. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  6. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser- induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  7. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010). [CrossRef]
  8. J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77, 235206 (2008). [CrossRef]
  9. P. S. Whitney, K. Uwai, H. Nakagome, and K. Takahei, “Electrical properties of ytterbium-doped InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 53, 2074–2076 (1988). [CrossRef]
  10. K. Takahei, A. Taguchi, H. Nakagome, K. Uwai, and P. S. Whitney, “Intra‐4f‐shell luminescence excitation and quenching mechanism of Yb in InP,” J. Appl. Phys. 66, 4941–4946 (1989). [CrossRef]
  11. A. Taguchi, H. Nakagome, and K. Takahei, “Thermal quenching mechanism of Yb intra-4f-shell luminescence in lnP,” J. Appl. Phys. 70, 5604–5607 (1991). [CrossRef]
  12. A. Taguchi, M. Taniguchi, and K. Takahei, “Direct verification of energy back transfer from Yb 4f-shell to InP host,” Appl. Phys. Lett. 60, 965–967 (1992). [CrossRef]
  13. A. Taguchi, K. Takahei, and Y. Horikoshi, “Multiphonon-assisted enegy transfer between Yb 4f shell and InP host,” J. Appl. Phys. 76, 7288–7295 (1994). [CrossRef]
  14. I. Tsimperidiqa, T. Gregorkiewicz, and C. A. J. Ammerlaan, “Role of electron traps in the excitation and de-excitation mechanism of Yb3+ in InP,” J. Appl. Phys. 77, 1523–1530(1995). [CrossRef]
  15. M. A. J. Klik and T. Gregorkiewicz, “Optically induced deexcitation of rare-earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89, 227401 (2002). [CrossRef]
  16. M. Needels, M. Schluter, and M. Lannoo, “Erbium point defects in silicon,” Phys. Rev. B 47, 15533–15536 (1993). [CrossRef]
  17. H. J. Lozykowski and A. K. Alshawa, “Kinetics and quenching mechanisms of photolurninescence in Yb-doped InP,” J. Appl. Phys. 76, 4836–4846 (1994). [CrossRef]
  18. W. Korber and A. Hangleiter, “Excitation and decay mechanisms of the intra-4f luminescence of Yb3+ in epitaxial lnP:Yb layers,” Appl. Phys. Lett. 52, 114–116 (1988). [CrossRef]
  19. B. K. Ridley, “Multiphonon, non-radiative transition rate for electrons in semiconductors and insulators,” J. Phys. C 11, 2323–2341 (1978). [CrossRef]
  20. E. Gutsche, “Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions,” Phys. Status Solidi B 109, 583–597 (1982). [CrossRef]
  21. A. Taguchi and K. Takahei, “Band-edge-related luminescence due to the energy backtransfer in Yb-doped InP,” J. Appl. Phys. 79, 3261–3266 (1996). [CrossRef]
  22. O. Semyonov, A. Subashiev, Z. Chen, and S. Luryi, “Radiation efficiency of heavily doped bulk n-InP semiconductor,” J. Appl. Phys. 108, 013101 (2010). [CrossRef]
  23. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23, 639–641 (1998). [CrossRef]
  24. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147(1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited