OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1148–1153

Power-dependent shaping of solitons in parity time symmetric potentials with spatially modulated nonlinearity

Yunji Meng and Youwen Liu  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1148-1153 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001148


View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the families of solitons supported by parity time (PT) symmetric potentials with spatially modulated nonlinearity. The competition between the real part of PT symmetric potentials and out-of-phase nonlinearity modulations can result in remarkable power-dependent shape transformations of solitons and substantially modifies their stability properties. Linear stability analysis reveals that, with the increase of the strength of out-of-phase nonlinearity modulation, the odd soliton’s stability domain deceases, while even for solitons, the reverse applies. The effect of variation of the amplitude of the imaginary part of PT symmetric potential on stability properties of solitons is also studied.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 19, 2012
Revised Manuscript: March 5, 2013
Manuscript Accepted: March 14, 2013
Published: April 10, 2013

Citation
Yunji Meng and Youwen Liu, "Power-dependent shaping of solitons in parity time symmetric potentials with spatially modulated nonlinearity," J. Opt. Soc. Am. B 30, 1148-1153 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1148


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998). [CrossRef]
  2. R. Shankar, Principles of Quantum Mechanics (Springer, 1994).
  3. A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A 38, L171–L176 (2005). [CrossRef]
  4. E. A. Ultanir, G. I. Stegeman, and D. N. Christodoulides, “Dissipative photonic lattice soliton,” Opt. Lett. 29, 845–847 (2004). [CrossRef]
  5. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007). [CrossRef]
  6. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010). [CrossRef]
  7. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009). [CrossRef]
  8. K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT-symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]
  9. K. Zhou, Z. Guo, J. Wang, and S. Liu, “Defect modes in defective parity-time symmetric periodic complex potentials,” Opt. Lett. 35, 2928–2930 (2010). [CrossRef]
  10. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical solitons in PT periodic lattices,” Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]
  11. X. Zhu, H. Wang, L. Zheng, H. Li, and Y. He, “Gap solitons in parity-time complex periodic optical lattices with the real part of superlattics,” Opt. Lett. 36, 2680–2682 (2011). [CrossRef]
  12. H. Li, Z. Shi, X. Jiang, and X. Zhu, “Gray solitons in parity-time symmetric potentials,” Opt. Lett. 36, 3290–3292 (2011). [CrossRef]
  13. Z. Shi, X. Jiang, X. Zhu, and H. Li, “Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials,” Phys. Rev. A 84, 053855 (2011). [CrossRef]
  14. H. Wang and J. Wang, “Defect solitons in parity-time periodic potentials,” Opt. Express 19, 4030–4035 (2011). [CrossRef]
  15. Z. Lu and Z. Zhang, “Defect solitons in parity-time symmetric superlattices,” Opt. Express 19, 11457–11462 (2011). [CrossRef]
  16. S. Hu, X. Ma, D. Lu, Z. Yang, Y. Zheng, and W. Hu, “Solitons supported by complex PT-symmetric Gaussian potentials,” Phys. Rev. A 84, 043818 (2011). [CrossRef]
  17. J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007). [CrossRef]
  18. Y. V. Kartashov, V. A. Vysloukh, A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, A. Tünnermann, T. Pertsch, and L. Torner, “Surface solitons at interfaces of arrays with spatially modulated nonlinearity,” Opt. Lett. 33, 1120–1122 (2008). [CrossRef]
  19. L. Dong and H. Li, “Surface solitons in nonlinear lattices,” J. Opt. Soc. Am. B 27, 1179–1183 (2010). [CrossRef]
  20. Y. J. He, D. Mihalache, and B. Hu, “Soliton drift, rebound, penetration, and trapping at the interface between media with uniform and spatially modulated nonlinearities,” Opt. Lett. 35, 1716–1718 (2010). [CrossRef]
  21. H. C. Huang, Y. J. He, Y. Z. Liu, and H. Z. Wang, “Dynamics and all-optical control of solitons at the interface of optical superlattices with spatially modulated nonlinearity,” Opt. Express 19, 8795–8801 (2011). [CrossRef]
  22. Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner, “Two-dimensional solitons in nonlinear lattices,” Opt. Lett. 34, 770–772 (2009). [CrossRef]
  23. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Power-dependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index,” Opt. Lett. 33, 2173–2175 (2008). [CrossRef]
  24. Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner, “Stabilization of multibeam necklace solitons in circular arrays with spatially modulated nonlinearity,” Phys. Rev. A 80, 053816 (2009). [CrossRef]
  25. L. Dong, H. Li, C. Huang, S. Zhong, and C. Li, “Higher-charged vortices in mixed linear-nonlinear circular arrays,” Phys. Rev. A 84, 043830 (2011). [CrossRef]
  26. Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner, “Vector solitons in nonlinear lattices,” Opt. Lett. 34, 3625–3627 (2009). [CrossRef]
  27. F. Ye, Y. V. Kartashov, B. Hu, and L. Torner, “Light bullets in Bessel optical lattices with spatially modulated nonlinearity,” Opt. Express 17, 11328–11334 (2009). [CrossRef]
  28. L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1131 (2009). [CrossRef]
  29. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  30. D. Blömer, A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151–2157(2006). [CrossRef]
  31. F. Kh. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices,” Phys. Rev. A 83, 041805 (2011). [CrossRef]
  32. D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Stability of solitons in PT-symmetric nonlinear potentials,” Europhys. Lett. 96, 64003 (2011). [CrossRef]
  33. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Lattice solitons in PT-symmetric mixed linear–nonlinear optical lattices,” Phys. Rev. A 85, 013831 (2012). [CrossRef]
  34. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Solitons in PT-symmetric optical lattices with spatially periodic modulation of nonlinearity,” Opt. Commun. 285, 3320–3324 (2012). [CrossRef]
  35. J. Yang and T. I. Lakoba, “Universally-convergent squared-operator iteration methods for solitary in general nonlinear wave equation,” Stud. Appl. Math. 118, 153–197 (2007). [CrossRef]
  36. M. J. Ablowitz and Z. H. Musslimani, “Spectral renormalization method for computing self-localized solutions to nonlinear system,” Opt. Lett. 30, 2140–2142 (2005). [CrossRef]
  37. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity,” Opt. Lett. 33, 1747–1749 (2008). [CrossRef]
  38. S. Nixon, L. Ge, and J. Yang, “Stability analysis for solitons in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited