OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1161–1166

Omnidirectional high absorption based on an asymmetric photonic crystal composed of negative-index material and positive-index material

Nannan Wu, Huiping Tian, Yanhong Zhang, and Yuefeng Ji  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1161-1166 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001161


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption enhancement of photonic crystals composed of negative-index material and positive-index material is investigated in this article. It is found that whole absorption of an electromagnetic wave with weak dependence on the incident angle can be achieved in an asymmetric structure by adjusting materials and parameters. Furthermore, with the incident angle increasing to 80°, we demonstrate that the absorption for both polarizations remains over 80%. Finally, the influence of the damping factor of the Drude model is studied, and a conclusion is drawn that says the absorption is invariant with the damping factor when the ratio between the damping factor and the electronic or magnetic plasma frequency is smaller than 104.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(300.1030) Spectroscopy : Absorption
(230.5298) Optical devices : Photonic crystals
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Photonic Crystals

History
Original Manuscript: November 27, 2012
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 8, 2013
Published: April 10, 2013

Citation
Nannan Wu, Huiping Tian, Yanhong Zhang, and Yuefeng Ji, "Omnidirectional high absorption based on an asymmetric photonic crystal composed of negative-index material and positive-index material," J. Opt. Soc. Am. B 30, 1161-1166 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  2. Q. Feng, M. B. Pu, C. G. Hu, and X. G. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2012). [CrossRef]
  3. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011). [CrossRef]
  4. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Progress Electromagn. Res. 101, 231–239 (2010). [CrossRef]
  5. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012). [CrossRef]
  6. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008). [CrossRef]
  7. M. Wang, C. G. Hu, M. B. Pu, C. Huang, Z. Y. Zhao, Q. Feng, and X. G. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19, 20642–20649 (2011). [CrossRef]
  8. T. V. Teperik, V. V. Popov, and F. J. Garcia de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. Pure Appl. Opt. 9, S458 (2007). [CrossRef]
  9. Z. M. Zhang, G. Q. Du, H. T. Jiang, Y. H. Li, Z. S. Wang, and H. Chen, “Complete absorption in a heterostructure composed of a metal and a doped photonic crystal,” J. Opt. Soc. Am. B 27, 909–913 (2010). [CrossRef]
  10. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserre, and C. Amra, “Optical design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011). [CrossRef]
  11. G. C. R. Devarapu and S. Foteinopoulou, “Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,” Opt. Express 20, 13040–13054 (2012). [CrossRef]
  12. J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasic-periodic structure,” Opt. Express 14, 2014–2020 (2006). [CrossRef]
  13. K. Iwaszczuk, A. C. Strikwerda, K. Fan, and X. Zhang, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012). [CrossRef]
  14. R. Alaee, C. Menzel, C. Rockstuhl, and F. lederer, “Perfect absorbers on curved surfaces and their potential applications,” Opt. Express 20, 18370–18376 (2012). [CrossRef]
  15. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterial for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009). [CrossRef]
  16. R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, “Nested metamaterials for wireless strain sensing,” IEEE J. Sel. Top. Quantum Electron. 16, 450–458 (2010). [CrossRef]
  17. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterail based telemetric strain sensing in different materials,” Opt. Express 18, 5000–5007 (2010). [CrossRef]
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]
  19. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  20. A. Mishra, S. K. Awasthi, S. K. Srivastava, U. Malaviya, and S. P. Ojha, “Tunable and omnidirectional filter based on one-dimensional photonic crystals composed of single-negative materials,” J. Opt. Soc. Am. B 28, 1416–1422 (2011). [CrossRef]
  21. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials,” J. Opt. Soc. Am. A 24, A28–A32 (2007). [CrossRef]
  22. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Independently tunable omnidirectional multichannel filters based on the fractal multilayers containing negative-index materials,” Opt. Lett. 33, 1255–1257 (2008). [CrossRef]
  23. Y. H. Chen, “Omnidirectional and independently tunable defect modes in fractal photonic crystals containing single-negative materials,” Appl. Phys. B 95, 757–761 (2009). [CrossRef]
  24. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Conditions of near-zero dispersion of defect modes in one-dimensional photonic crystals containing negative-index materials,” J. Opt. Soc. Am. B 23, 776–781 (2006). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  26. K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited