OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1167–1172

Goos–Hänchen and Imbert–Fedorov shifts at the interface of ordinary dielectric and topological insulator

Fen Liu, Jingping Xu, Ge Song, and Yaping Yang  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1167-1172 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001167


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using Yasumoto and Oishi’s energy flux method, we evaluated the Goos–Hänchen (GH) and Imbert–Fedorov (IF) shifts of beam incident from the ordinary dielectric upon the topological insulator (TI) with totally internal reflection. Comparing with the case of two ordinary isotropic dielectrics, it is found that the topological parameter Θ of TI can affect two shifts. More important, IF shift appears even for a linear polarized TE or TM beam and achieves the maximum with elliptical polarization, which completely originates from the TI’s intrinsic magnetoelectric coupling effect. This observation provides an optical experimental approach to determine the topological parameters Θ and provide a new way to control the GH shift and IF shift.

© 2013 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: January 7, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 14, 2013
Published: April 10, 2013

Citation
Fen Liu, Jingping Xu, Ge Song, and Yaping Yang, "Goos–Hänchen and Imbert–Fedorov shifts at the interface of ordinary dielectric and topological insulator," J. Opt. Soc. Am. B 30, 1167-1172 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1167


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,” Phys. Rev. Lett. 98, 106803 (2007). [CrossRef]
  2. J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures,” Phys. Rev. B 75, 121306(2007). [CrossRef]
  3. R. Roy, “Three dimensional topological invariants for time reversal invariant Hamiltonians and the three dimensional quantum spin Hall effect,” http://arxiv.org/pdf/cond-mat/0607531.pdf .
  4. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452, 970–974 (2008). [CrossRef]
  5. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, “Experimental realization of a three-dimensional topological insulator Bi2Te3,” Science 325, 178–181 (2009). [CrossRef]
  6. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface,” Nat. Phys. 5, 398–402 (2009). [CrossRef]
  7. T. Sato, K. Segawa, H. Guo, K. Sugawara, S. Souma, T. Takahashi, and Y. Ando, “Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2,” Phys. Rev. Lett. 105, 136802 (2010). [CrossRef]
  8. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011). [CrossRef]
  9. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010). [CrossRef]
  10. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010). [CrossRef]
  11. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008). [CrossRef]
  12. F. Wilczek, “Two applications of axion electrodynamics,” Phys. Rev. Lett. 58, 1799–1802 (1987). [CrossRef]
  13. M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009). [CrossRef]
  14. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
  15. K. V. Artmann, “Berechung der Seitenversetzung des total-reflektierten Strahles,” Ann. Phys. 437, 87–102 (1948). [CrossRef]
  16. F. I. Fedorov, “Theory of total reflection,” Dokl. Akad. Nauk. SSSR 105, 465–468 (1955).
  17. C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized beam,” Phys. Rev. D 5, 787–796 (1972). [CrossRef]
  18. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008). [CrossRef]
  19. Y. Miyagawa, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and H. Takara, “Over-10000-channel 2.5 GHz-spaced ultra-dense WDM light source,” Electron. Lett. 42, 655–657 (2006). [CrossRef]
  20. G. Xu, J. Sun, T. Zang, H. Mao, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from anisotropic topological insulators,” Opt. Commun. 287, 154–161 (2013). [CrossRef]
  21. G. Xu, T. Zang, H. Mao, and T. Pan, “Transverse shifts of a reflected light beam from the air-chiral interface,” Phys. Rev. A 83, 053828 (2011). [CrossRef]
  22. Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005). [CrossRef]
  23. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  24. R. H. Renard, “Total reflection: A new evaluation of the Goos–Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964). [CrossRef]
  25. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos–Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000). [CrossRef]
  26. H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos–Hänchen effect around and off the critical angle,” J. Opt. Soc. Am. A 3, 550–557 (1986). [CrossRef]
  27. S. R. Seshadri, “Goos–Hänchen beam shift at total internal reflection,” J. Opt. Soc. Am. A 5, 583 (1988). [CrossRef]
  28. K. Yasumoto and Y. Oishi, “A new evaluation of the Goos–Hänchen shift and associated time delay,” J. Appl. Phys. 54, 2170–2176 (1983). [CrossRef]
  29. F. Pillon, H. Gilles, and S. Girard, “Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection,” Appl. Opt. 43, 1863–1869 (2004). [CrossRef]
  30. W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010). [CrossRef]
  31. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36, 3200–3202 (2011). [CrossRef]
  32. Y. Y. Huang, W. T. Dong, L. Gao, and C. W. Qiu, “Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab,” Opt. Express 19, 1310–1323 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited