OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1173–1177

Demonstration of a dynamic bandpass frequency filter in a rare-earth ion-doped crystal

Sarah E. Beavan, Elizabeth A. Goldschmidt, and Matthew J. Sellars  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1173-1177 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we propose and demonstrate a dynamic, narrow-bandpass frequency filter. This is generated in a rare-earth ion-doped crystal using a combination of spectral hole burning and Stark shifting. This filter can toggle within one microsecond between absorption and transmission, with 60dB difference in attenuation, in two separate 1 MHz wide spectral regions. The filter demonstrated here is specifically designed as a component in a rare-earth ion-based quantum repeater protocol. However, this is a general technique that could also be applied for amplitude or phase modulation, or switching between more complicated spectral profiles.

© 2013 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(260.6580) Physical optics : Stark effect
(350.2450) Other areas of optics : Filters, absorption

ToC Category:

Original Manuscript: November 30, 2012
Revised Manuscript: February 4, 2013
Manuscript Accepted: March 7, 2013
Published: April 10, 2013

Sarah E. Beavan, Elizabeth A. Goldschmidt, and Matthew J. Sellars, "Demonstration of a dynamic bandpass frequency filter in a rare-earth ion-doped crystal," J. Opt. Soc. Am. B 30, 1173-1177 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010). [CrossRef]
  2. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010). [CrossRef]
  3. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011). [CrossRef]
  4. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011). [CrossRef]
  5. U. Bogner, K. Beck, and M. Maier, “Electric field selective optical data storage using persistent spectral hole burning,” Appl. Phys. Lett. 46, 534–536 (1985). [CrossRef]
  6. C. D. Caro, A. Renn, and U. P. Wild, “Hole burning, Stark effect, and data storage: 2: holographic recording and detection of spectral holes,” Appl. Opt. 30, 2890–2898 (1991). [CrossRef]
  7. A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A 106, 3045–3060 (2002). [CrossRef]
  8. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
  9. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  10. P. M. Ledingham, W. R. Naylor, J. J. Longdell, S. E. Beavan, and M. J. Sellars, “Nonclassical photon streams using rephased amplified spontaneous emission,” Phys. Rev. A 81, 012301 (2010). [CrossRef]
  11. S. E. Beavan, M. P. Hedges, and M. J. Sellars, “Demonstration of photon-echo rephasing of spontaneous emission,” Phys. Rev. Lett. 109, 093603 (2012). [CrossRef]
  12. P. Ledingham, W. Naylor, and J. Longdell, “Experimental realization of light with time-separated correlations by rephasing amplified spontaneous emission,” Phys. Rev. Lett. 109, 093602 (2012). [CrossRef]
  13. R. M. Macfarlane and R. M. Shelby, Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids (North Holland, 1987).
  14. M. P. Hedges, “High performance solid state quantum memory,” Ph.D. thesis, Australian National University, 2011.
  15. F. Graf, A. Renn, U. Wild, and M. Mitsunaga, “Site interference in Stark-modulated photon echoes,” Phys. Rev. B 55, 11225(1997). [CrossRef]
  16. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995). [CrossRef]
  17. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B 70, 214116(2004). [CrossRef]
  18. G. J. Pryde, M. J. Sellars, and N. B. Manson, “Solid state coherent transient measurements using hard optical pulses,” Phys. Rev. Lett. 84, 1152–1155 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited