OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1178–1185

Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity

Abdel-Shafy F. Obada, Hosny. A. Hessian, Abdel-Basset A. Mohamed, and Ali H. Homid  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1178-1185 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001178


View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new physical scheme for implementing an N-bit discrete quantum Fourier transform (DQFT) is proposed via superconducting (SC) qubits coupled to a single-mode SC cavity. Two-qubit and one-qubit gates as well as a new two-qubit gate are realized. Such gates are used for implementing the algorithm of N-bit DQFT. We propose and analyze a detailed experimental procedure for implementing the algorithm and compute the fidelity measure to quantify the success of this algorithm. Estimates show that the protocol can be successfully implemented within the present experimental limits.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: October 26, 2012
Revised Manuscript: February 12, 2013
Manuscript Accepted: March 1, 2013
Published: April 12, 2013

Citation
Abdel-Shafy F. Obada, Hosny. A. Hessian, Abdel-Basset A. Mohamed, and Ali H. Homid, "Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity," J. Opt. Soc. Am. B 30, 1178-1185 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Schumacher, “Quantum coding,” Phys. Rev. A 51, 2738–2747 (1995). [CrossRef]
  2. D. Deutsch and R. Josza, “Rapid solution of problems by quantum computation,” Proc. R. Soc. London, Ser. A 439, 553–558 (1992). [CrossRef]
  3. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in 35th Annual Symposium on Foundations of Computer Science, S. Goldwasser, ed. (IEEE, 1994), pp. 124–134.
  4. M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight bounds on quantum searching,” Fortsch. Phys. 46, 493–505 (1998). [CrossRef]
  5. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, “Implementation of the quantum Fourier transform,” Phys. Rev. Lett. 86, 1889–1891 (2001). [CrossRef]
  6. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang, “Experimental realization of an order-finding algorithm with an NMR quantum computer,” Phys. Rev. Lett. 85, 5452–5455 (2000). [CrossRef]
  7. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001). [CrossRef]
  8. L. Fu, J. Luo, Li Xiao, and X. Zeng, “Experimental realization of discrete Fourier transformation on NMR quantum computer,” Appl. Magn. Reson. 19, 153–159 (2000). [CrossRef]
  9. M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum Fourier transform,” Phys. Rev. A 65, 052324 (2002). [CrossRef]
  10. H. F. Wang, S. Zhang, and K. H. Yeon, “Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics,” J. Korean Phys. Soc. 53, 1787–1790 (2008).
  11. H. F. Wang, X. Q. Shao, Y. F. Zhao, S. Zhang, and K. H. Yeon, “Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED,” J. Phys. B 43, 065503 (2010). [CrossRef]
  12. H.-F. Wang, A.-D. Zhu, S. Zhang, and K.-H. Yeon, “Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics,” New J. Phys. 13, 013021 (2011). [CrossRef]
  13. J. C. Howell and J. A. Yeazell, “Reducing the complexity of linear optics quantum circuits,” Phys. Rev. A 61, 052303 (2000). [CrossRef]
  14. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999). [CrossRef]
  15. H.-F. Wang, X.-X. Jiang, S. Zhang, and K.-H. Yeon, “Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits,” J. Phys. B 44, 115502 (2011). [CrossRef]
  16. J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005). [CrossRef]
  17. R. McDermott, R. W. Simmonds, M. Steffen, K. B. Cooper, K. Cicak, K. D. Osborn, S. Oh, D. P. Pappas, and J. M. Martinis, “Simultaneous state measurement of coupled Josephson phase qubits,” Science 307, 1299–1302 (2005). [CrossRef]
  18. Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
  19. D. V. Averin, “Quantum computing and quantum measurement with mesoscopic Josephson junctions,” Fortsch. Phys. 48, 1055–1074 (2000). [CrossRef]
  20. A. Shnirman, G. Schön, and Z. Hermon, “Quantum manipulations of small Josephson junctions,” Phys. Rev. Lett. 79, 2371–2374 (1997). [CrossRef]
  21. J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003). [CrossRef]
  22. C.-P. Yang, Y.-X. Liu, and F. Nori, “Phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 81, 062323 (2010). [CrossRef]
  23. A.-S. F. Obada, H. A. Hessian, A.-B. A. Mohamed, and A. H. Homid, “Quantum logic gates generated by SC-charge qubits coupled to a resonator,” J. Phys. A 45, 485305(2012). [CrossRef]
  24. Y. Makhlin, G. Schön, and A. Shnirman, “Josephson-junction qubits with controlled couplings,” Nature 398, 305–307 (1999). [CrossRef]
  25. Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
  26. Y.-X. Liu, L. F. Wei, and F. Nori, “Measuring the quality factor of a microwave cavity using superconducting qubit devices,” Phys. Rev. A 72, 033818 (2005). [CrossRef]
  27. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998). [CrossRef]
  28. K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002). [CrossRef]
  29. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997). [CrossRef]
  30. K. W. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf, “Measurement of the excited-state lifetime of a microelectronic circuit,” Phys. Rev. Lett. 90, 027002 (2003). [CrossRef]
  31. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited