OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1211–1215

All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam

Qiang Zhang, Tao Zhu, Yusong Hou, and Kin Seng Chiang  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1211-1215 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001211


View Full Text Article

Enhanced HTML    Acrobat PDF (779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an all-fiber sensor for low-frequency vibration measurements. The sensor is based on the configuration of a Fabry–Perot interferometer (FPI), where the first mirror of the FPI is a splice joint between a single-mode fiber and a hollow-core fiber (HCF) and the second mirror is the end face of an etched microstructure support beam inserted into the HCF. The support beam consists of a mass block in the middle and can oscillate freely in the HCF when the sensor is subject to vibration. Our experimental sensor using a 60 mm long support beam with a diameter of 35 μm and a mass block of 2.95×108kg can detect vibrations at frequencies lower than 1 Hz with an acceleration resolution of 8.35×107g and a measurement range of ±2.24g. The sensor output varies by only 2.5% when the temperature changes from 20°C to 120°C. The sensor could be embedded in composite material and find applications in harsh environments.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 30, 2012
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 18, 2013
Published: April 15, 2013

Citation
Qiang Zhang, Tao Zhu, Yusong Hou, and Kin Seng Chiang, "All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam," J. Opt. Soc. Am. B 30, 1211-1215 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Strasberg and D. Feit, “Vibration damping of large structures induced by attached small resonant structures,” J. Acoust. Soc. Am. 99, 335–344 (1996). [CrossRef]
  2. N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE 86, 1640–1659 (1998). [CrossRef]
  3. H. Nakstad and J. T. Kringlebotn, “Oil and gas applications: probing oil fields,” Nat. Photonics 2, 147–149 (2008). [CrossRef]
  4. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microship optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012). [CrossRef]
  5. C. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” J. Microelectromech. Syst. 7, 235–244 (1998). [CrossRef]
  6. H. Kulah, J. Chae, N. Yazdi, and K. Najafi, “Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circ. 41, 352–361 (2006). [CrossRef]
  7. S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Meas. Sci. Technol. 20, 092001 (2009). [CrossRef]
  8. J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995). [CrossRef]
  9. J. M. Lopez-Higuera, M. A. Morante, and A. Cobo, “Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications,” J. Lightwave Technol. 15, 1120–1130 (1997). [CrossRef]
  10. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18, 1233–1243 (2000). [CrossRef]
  11. N. K. Pandey and B. C. Yadav, “Embedded fibre optic microbend sensor for measurement of high pressure and crack detection,” Sens. Actuat. A 128, 33–36 (2006). [CrossRef]
  12. K. Weir, W. J. O. Boyle, B. T. Meggit, A. W. Palmer, and K. T. V. Grattan, “A novel adaptation of the Michelson interferometer for the measurement of vibration,” J. Lightwave Technol. 10, 700–703 (1992). [CrossRef]
  13. G. Schröpfer, W. Elflein, M. d. Labachelerie, H. Porte, and S. Ballandras, “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuat. A 68, 344–359 (1998). [CrossRef]
  14. T. K. Gangopadhyay, and P. J. Henderson, “Vibration: history and measurement with an extrinsic Fabry-Pérot sensor with solid-state laser interferometry,” Appl. Opt. 38, 2471–2477 (1999). [CrossRef]
  15. J. A. Garcia-Souto, and H. Lamela-Rivera, “High resolution (<1  nm) interferometric fiber-optic sensor of vibrations in high-power transformers,” Opt. Express 14, 9679–9686 (2006). [CrossRef]
  16. Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008). [CrossRef]
  17. T. Ke, T. Zhu, Y. J. Rao, and M. Deng, “Accelerometer based on all-fiber Fabry-Perot interferometer formed by hollow-core photonic crystal fiber,” Microw. Opt. Technol. Lett. 52, 2531–2535 (2010). [CrossRef]
  18. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998). [CrossRef]
  19. Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15, 1437–1439 (2003). [CrossRef]
  20. K. O. Lee, K. S. Chiang, and Z. Chen, “Temperature-insensitive fiber-Bragg-gating-based vibration sensor,” Opt. Eng. 40, 2582–2585 (2001). [CrossRef]
  21. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. M. Culloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8, 1292–1298 (2008). [CrossRef]
  22. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33, 1004–1006 (2008). [CrossRef]
  23. N. V. Wheeler, M. D. W. Grogan, T. D. Bradley, F. Couny, T. A. Birks, and F. Benabid, “Multipass hollow core-PCF microcell using a tapered micromirror,” J. Lightwave Technol. 29, 1314–1318 (2011). [CrossRef]
  24. P. Museros and M. D. Martinez-Rodrigo, “Vibration control of simply supported beams under moving loads using fluid viscous dampers,” J. Sound Vib. 300, 292–315 (2007). [CrossRef]
  25. H. Dubbel, Taschenbuch für den Maschinenbau (J. Springer, 1951).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited